Skip to main content

2019 | OriginalPaper | Buchkapitel

3. Thermal Properties

verfasst von : Mateusz Wyrzykowski, Agnieszka Knoppik, Wilson R. Leal da Silva, Pietro Lura, Tulio Honorio, Yunus Ballim, Brice Delsaute, Stéphanie Staquet, Miguel Azenha

Erschienen in: Thermal Cracking of Massive Concrete Structures

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter is dedicated to relevant thermal properties in the scope of massive concrete structures. The initial part of the chapter (Sect. 3.1) pertains to properties that affect internal temperature developments in concrete, namely the thermal conductivity, the heat capacity and the heat exchanges between concrete and the surrounding media. The final part of the chapter (Sect. 3.2) is devoted to the thermal expansion coefficient, which is of fundamental importance to understand and predict the actual volume changes that take place in massive structures due to temperature variations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat AASHTO. (2011). T 336 Standard method of test for coefficient of thermal expansion of hydraulic cement concrete. Washington, D.C.: American Association of State Highway and Transportation Officials. AASHTO. (2011). T 336 Standard method of test for coefficient of thermal expansion of hydraulic cement concrete. Washington, D.C.: American Association of State Highway and Transportation Officials.
Zurück zum Zitat Abdolhosseini Qomi, M. J., Ulm, F.-J., & Pellenq, R. J.-M. (2015). Physical origins of thermal properties of cement paste. Physical Review Applied, 3, 064010.CrossRef Abdolhosseini Qomi, M. J., Ulm, F.-J., & Pellenq, R. J.-M. (2015). Physical origins of thermal properties of cement paste. Physical Review Applied, 3, 064010.CrossRef
Zurück zum Zitat ACI. (2001). ACI 224.3R-95: Joints in concrete construction. Farmington Hills, MI. ACI. (2001). ACI 224.3R-95: Joints in concrete construction. Farmington Hills, MI.
Zurück zum Zitat ACI. (2005). ACI 207.1R-05: Guide to mass concrete. Farmington Hills, MI. ACI. (2005). ACI 207.1R-05: Guide to mass concrete. Farmington Hills, MI.
Zurück zum Zitat ARMY-COE CRD-C 39-81. (1981). Handbook for Concrete and Cement Test Method for Coefficient of Linear Thermal Expansion of Concrete. ARMY-COE CRD-C 39-81. (1981). Handbook for Concrete and Cement Test Method for Coefficient of Linear Thermal Expansion of Concrete.
Zurück zum Zitat ASTM C531-00. (2012). Standard test method for linear shrinkage and coefficient of thermal expansion of chemical-resistant mortars, grouts, monolithic surfacings, and polymer concretes. West Conshohocken, PA: ASTM International. ASTM C531-00. (2012). Standard test method for linear shrinkage and coefficient of thermal expansion of chemical-resistant mortars, grouts, monolithic surfacings, and polymer concretes. West Conshohocken, PA: ASTM International.
Zurück zum Zitat ASTM C1113/C1113M-09. (2013). Standard test method for thermal conductivity of refractories by hot wire (Platinum resistance thermometer technique). West Conshohocken, PA: ASTM International. ASTM C1113/C1113M-09. (2013). Standard test method for thermal conductivity of refractories by hot wire (Platinum resistance thermometer technique). West Conshohocken, PA: ASTM International.
Zurück zum Zitat Azenha, M., Maekawa, K., Ishida, T., & Faria, R. (2007a). Drying induced moisture losses from mortar to the environment. Part I: Experimental research. Materials and Structures, 40, 80–811. Azenha, M., Maekawa, K., Ishida, T., & Faria, R. (2007a). Drying induced moisture losses from mortar to the environment. Part I: Experimental research. Materials and Structures, 40, 80–811.
Zurück zum Zitat Azenha, M., Maekawa, K., Ishida, T., & Faria, R. (2007b). Drying induced moisture losses from mortar to the environment. Part II: Numerical implementation. Materials and Structures, 40, 813–825.CrossRef Azenha, M., Maekawa, K., Ishida, T., & Faria, R. (2007b). Drying induced moisture losses from mortar to the environment. Part II: Numerical implementation. Materials and Structures, 40, 813–825.CrossRef
Zurück zum Zitat Azenha, M. (2009). Numerical simulation of the structural behaviour of concrete since its early ages. Ph.D. thesis, Faculty of Engineering of the University of Porto, Portugal. Azenha, M. (2009). Numerical simulation of the structural behaviour of concrete since its early ages. Ph.D. thesis, Faculty of Engineering of the University of Porto, Portugal.
Zurück zum Zitat Azenha, M., Sousa, C., Faria, R., & Neves, A. (2011). Thermo–hygro–mechanical modelling of self-induced stresses during the service life of RC structures. Engineering Structures, 33, 3442–3453.CrossRef Azenha, M., Sousa, C., Faria, R., & Neves, A. (2011). Thermo–hygro–mechanical modelling of self-induced stresses during the service life of RC structures. Engineering Structures, 33, 3442–3453.CrossRef
Zurück zum Zitat Azenha, M, & Granja, J. (2015). Characterization of concrete properties at early ages: Case studies of the University of Minho. CMS Workshop “Cracking of Massive Concrete Structures”, eBook of Presentations (RILEM), March 17, 2015. ENS-Cachan, Paris. Azenha, M, & Granja, J. (2015). Characterization of concrete properties at early ages: Case studies of the University of Minho. CMS Workshop “Cracking of Massive Concrete Structures”, eBook of Presentations (RILEM), March 17, 2015. ENS-Cachan, Paris.
Zurück zum Zitat Bangash, M. Y. H. (2001). Manual of numerical methods in concrete. London, UK: Thomas Telford Ltd. Bangash, M. Y. H. (2001). Manual of numerical methods in concrete. London, UK: Thomas Telford Ltd.
Zurück zum Zitat Baquerizo, L. G., Matschei, T., Scrivener, K. L., et al. (2015). Hydration states of AFm cement phases. Cement and Concrete Research, 73, 143–157.CrossRef Baquerizo, L. G., Matschei, T., Scrivener, K. L., et al. (2015). Hydration states of AFm cement phases. Cement and Concrete Research, 73, 143–157.CrossRef
Zurück zum Zitat Bentz, D. (2007). Transient plane source measurements of the thermal properties of hydrating cement pastes. Materials and Structures, 40, 1073–1080.CrossRef Bentz, D. (2007). Transient plane source measurements of the thermal properties of hydrating cement pastes. Materials and Structures, 40, 1073–1080.CrossRef
Zurück zum Zitat Bentz, D. (2008). A review of early-age properties of cement-based materials. Cement and Concrete Research, 38(2), 196–204.CrossRef Bentz, D. (2008). A review of early-age properties of cement-based materials. Cement and Concrete Research, 38(2), 196–204.CrossRef
Zurück zum Zitat Bentz, D., Peltz, M., Duran-Herrera, A., Valdez, P., & Juarez, C. (2011). Thermal properties of high-volume fly ash mortars and concretes. Journal of Building Physics, 34(3), 263–275.CrossRef Bentz, D., Peltz, M., Duran-Herrera, A., Valdez, P., & Juarez, C. (2011). Thermal properties of high-volume fly ash mortars and concretes. Journal of Building Physics, 34(3), 263–275.CrossRef
Zurück zum Zitat Bentz, D. P., & Prasad, K. R. (2007). Thermal performance of fire resistive materials. I. Characterization with respect to thermal performance models. NISTIR 7401, National Institute of Standards and Technology, Gaithersburg, MD, USA. Bentz, D. P., & Prasad, K. R. (2007). Thermal performance of fire resistive materials. I. Characterization with respect to thermal performance models. NISTIR 7401, National Institute of Standards and Technology, Gaithersburg, MD, USA.
Zurück zum Zitat Bjøntegaard, Ø., & Sellevold, E. J. (2001). Interaction between thermal dilation and autogenous deformation in high performance concrete. Materials and Structures, 34, 266–272.CrossRef Bjøntegaard, Ø., & Sellevold, E. J. (2001). Interaction between thermal dilation and autogenous deformation in high performance concrete. Materials and Structures, 34, 266–272.CrossRef
Zurück zum Zitat Bohm, H. J., & Nogales, S. (2008). Mori-Tanaka models for the thermal conductivity of composites with interfacial resistance and particle size distributions. Composites Science and Technology, 68(5), 1181–1187.CrossRef Bohm, H. J., & Nogales, S. (2008). Mori-Tanaka models for the thermal conductivity of composites with interfacial resistance and particle size distributions. Composites Science and Technology, 68(5), 1181–1187.CrossRef
Zurück zum Zitat de Borst, R., & van den Boogaard, A. H. (1994). Finite-element modeling of deformation and cracking in early-age concrete. ASCE Journal of the Engineering Mechanics, 120(12), 2519–2534.CrossRef de Borst, R., & van den Boogaard, A. H. (1994). Finite-element modeling of deformation and cracking in early-age concrete. ASCE Journal of the Engineering Mechanics, 120(12), 2519–2534.CrossRef
Zurück zum Zitat Boulay, C. (2003). Determination of the coefficient of thermal expansion. Early age cracking in cementitious systems. Report of RILEM Technical Committee 181-EAS—Early age shrinkage induced stresses and cracking in cementitious systems (pp. 217–224). RILEM Publications SARL. Boulay, C. (2003). Determination of the coefficient of thermal expansion. Early age cracking in cementitious systems. Report of RILEM Technical Committee 181-EAS—Early age shrinkage induced stresses and cracking in cementitious systems (pp. 217–224). RILEM Publications SARL.
Zurück zum Zitat Branco, F. A., Mendes, P. A., & Mirambell, E. (1992). Heat of hydration effects in concrete structures. ACI Materials Journal, 89(2), 139–145. Branco, F. A., Mendes, P. A., & Mirambell, E. (1992). Heat of hydration effects in concrete structures. ACI Materials Journal, 89(2), 139–145.
Zurück zum Zitat van Breugel, K. (1980). Artificial cooling of hardening concrete. Delft University of Technology. Concrete Structures, Delft. van Breugel, K. (1980). Artificial cooling of hardening concrete. Delft University of Technology. Concrete Structures, Delft.
Zurück zum Zitat Briffaut, M., Benboudjema, F., Torrenti, J. M., & Nahas, G. (2012). Effects of the early age thermal behaviour on long term damage risk in massive concrete structures. European Journal of Environmental and Civil Engineering, 16(5), 598–605.CrossRef Briffaut, M., Benboudjema, F., Torrenti, J. M., & Nahas, G. (2012). Effects of the early age thermal behaviour on long term damage risk in massive concrete structures. European Journal of Environmental and Civil Engineering, 16(5), 598–605.CrossRef
Zurück zum Zitat Buch, N. J., & Jahangirnejad, S. (2008). Quantifying coefficient of thermal expansion values of typical hydraulic cement concrete paving mixtures (No. RC-1503). Michigan Department of Transportation, Construction & Technology Division. Buch, N. J., & Jahangirnejad, S. (2008). Quantifying coefficient of thermal expansion values of typical hydraulic cement concrete paving mixtures (No. RC-1503). Michigan Department of Transportation, Construction & Technology Division.
Zurück zum Zitat Campbell-Allen, D., & Thorne, C. P. (1963). The thermal conductivity of concrete. Magazine of Concrete Research, 15(43), 39–48.CrossRef Campbell-Allen, D., & Thorne, C. P. (1963). The thermal conductivity of concrete. Magazine of Concrete Research, 15(43), 39–48.CrossRef
Zurück zum Zitat CEB-FIP fib. (2013). Bulletin 70. State-of-the-art report: Code-type models for concrete behaviour. Background of MC2010. CEB-FIP fib. (2013). Bulletin 70. State-of-the-art report: Code-type models for concrete behaviour. Background of MC2010.
Zurück zum Zitat Cerny, R., & Rovnanikova, P. (2002). Transport processes in concrete. CRC Press. Cerny, R., & Rovnanikova, P. (2002). Transport processes in concrete. CRC Press.
Zurück zum Zitat Choktaweekarn, P., & Tangtermsirikul, S. (2010). Effect of aggregate type, casting, thickness and curing condition on restrained strain of mass concrete. Songklanakarin Journal of Science and Technology, 32, 391–402. Choktaweekarn, P., & Tangtermsirikul, S. (2010). Effect of aggregate type, casting, thickness and curing condition on restrained strain of mass concrete. Songklanakarin Journal of Science and Technology, 32, 391–402.
Zurück zum Zitat Cook, W. D., Aitcin, P. C., & Mitchell, D. (1993). Thermal stresses in large high-strength concrete columns. ACI Materials Journal, 89(1), 61–68. Cook, W. D., Aitcin, P. C., & Mitchell, D. (1993). Thermal stresses in large high-strength concrete columns. ACI Materials Journal, 89(1), 61–68.
Zurück zum Zitat Côté, J., & Konrad, J.-M. (2005). A generalized thermal conductivity model for soils and construction materials. Canadian Geotechnical Journal, 42, 443–458.CrossRef Côté, J., & Konrad, J.-M. (2005). A generalized thermal conductivity model for soils and construction materials. Canadian Geotechnical Journal, 42, 443–458.CrossRef
Zurück zum Zitat Craeye, B., de Schutter, G., Humbeeck, H. V., & Cotthem, A. V. (2009). Early age behaviour of concrete supercontainers for radioactive waste disposal. Nuclear Engineering and Design, 239, 23–35.CrossRef Craeye, B., de Schutter, G., Humbeeck, H. V., & Cotthem, A. V. (2009). Early age behaviour of concrete supercontainers for radioactive waste disposal. Nuclear Engineering and Design, 239, 23–35.CrossRef
Zurück zum Zitat Cusson, D., & Hoogeveen, T. (2007). An experimental approach for the analysis of early-age behaviour of high-performance concrete structures under restrained shrinkage. Cement and Concrete Research, 37, 200–209.CrossRef Cusson, D., & Hoogeveen, T. (2007). An experimental approach for the analysis of early-age behaviour of high-performance concrete structures under restrained shrinkage. Cement and Concrete Research, 37, 200–209.CrossRef
Zurück zum Zitat Delsaute, B., & Staquet, S. (2017). Decoupling thermal and autogenous strain of concretes with different water/cement ratios during the hardening process. Advances in Civil Engineering Materials, 6(2), 1–22.CrossRef Delsaute, B., & Staquet, S. (2017). Decoupling thermal and autogenous strain of concretes with different water/cement ratios during the hardening process. Advances in Civil Engineering Materials, 6(2), 1–22.CrossRef
Zurück zum Zitat Faria, R., Azenha, M., & Figueiras, J. A. (2006). Modelling of concrete at early ages: Application to an externally restrained slab. Cement and Concrete Research, 28, 572–585.CrossRef Faria, R., Azenha, M., & Figueiras, J. A. (2006). Modelling of concrete at early ages: Application to an externally restrained slab. Cement and Concrete Research, 28, 572–585.CrossRef
Zurück zum Zitat Gawin, D., Majorana, C. E., & Schrefler, B. A. (1999). Numerical analysis of hygro-thermic behaviour and damage of concrete at high temperature. Mechanics of Cohesive-Frictional Materials, 4, 37–74.CrossRef Gawin, D., Majorana, C. E., & Schrefler, B. A. (1999). Numerical analysis of hygro-thermic behaviour and damage of concrete at high temperature. Mechanics of Cohesive-Frictional Materials, 4, 37–74.CrossRef
Zurück zum Zitat Gawin, D., Pesavento, F., & Schrefler, B. A. (2006). Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part I: Hydration and hygro-thermal phenomena. International Journal for Numerical Methods in Engineering, 67, 299–331.CrossRef Gawin, D., Pesavento, F., & Schrefler, B. A. (2006). Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part I: Hydration and hygro-thermal phenomena. International Journal for Numerical Methods in Engineering, 67, 299–331.CrossRef
Zurück zum Zitat Gibbon, G. J., & Ballim, Y. (1998). Determination of the thermal conductivity of concrete during the early stages of hydration. Magazine of Concrete Research, 50, 229–235.CrossRef Gibbon, G. J., & Ballim, Y. (1998). Determination of the thermal conductivity of concrete during the early stages of hydration. Magazine of Concrete Research, 50, 229–235.CrossRef
Zurück zum Zitat Guo, L., Guo, L., Zhong, L., & Zhu, Y. (2011). Thermal conductivity and heat transfer coefficient of concrete. Journal of Wuhan University of Technology-Materials Science Edition, 26(4), 791–796.CrossRef Guo, L., Guo, L., Zhong, L., & Zhu, Y. (2011). Thermal conductivity and heat transfer coefficient of concrete. Journal of Wuhan University of Technology-Materials Science Edition, 26(4), 791–796.CrossRef
Zurück zum Zitat Grasley, Z., & Lange, D. (2007). Thermal dilation and internal relative humidity of hardened cement paste. Materials and Structures, 40(3), 311–317.CrossRef Grasley, Z., & Lange, D. (2007). Thermal dilation and internal relative humidity of hardened cement paste. Materials and Structures, 40(3), 311–317.CrossRef
Zurück zum Zitat Hammer, T. A., & Bjøntegaard, Ø. (2006). Testing of autogenous deformation (AD) and thermal dilation (TD) of early age mortar and concrete—Recommended test procedure. In International RILEM Conference on Volume Changes of Hardening Concrete: Testing and Mitigation (pp. 341–346). RILEM Publications SARL. Hammer, T. A., & Bjøntegaard, Ø. (2006). Testing of autogenous deformation (AD) and thermal dilation (TD) of early age mortar and concrete—Recommended test procedure. In International RILEM Conference on Volume Changes of Hardening Concrete: Testing and Mitigation (pp. 341–346). RILEM Publications SARL.
Zurück zum Zitat Hammerschmidt, U. (2002). Guarded hot-plate (GHP) method: Uncertainty assessment. International Journal of Thermophysics, 23(6), 1551–1570.CrossRef Hammerschmidt, U. (2002). Guarded hot-plate (GHP) method: Uncertainty assessment. International Journal of Thermophysics, 23(6), 1551–1570.CrossRef
Zurück zum Zitat Hamzah, M. O., Jamshidi, A., & Shahadan, Z. (2010). Evaluation of the potential of sasobit to reduce required heat energy and co2 emission in the asphalt industry. Journal of Cleaner Production, 18(18), 1859–1865.CrossRef Hamzah, M. O., Jamshidi, A., & Shahadan, Z. (2010). Evaluation of the potential of sasobit to reduce required heat energy and co2 emission in the asphalt industry. Journal of Cleaner Production, 18(18), 1859–1865.CrossRef
Zurück zum Zitat Hasanain, G. S., Khallaf, T. A., & Mahmood, K. (1989). Water evaporation from freshly placed concrete surfaces in hot weather. Cement and Concrete Research, 19(3), 465–475.CrossRef Hasanain, G. S., Khallaf, T. A., & Mahmood, K. (1989). Water evaporation from freshly placed concrete surfaces in hot weather. Cement and Concrete Research, 19(3), 465–475.CrossRef
Zurück zum Zitat Hobbs, D. (1971). The dependence of the bulk modulus, Young’s modulus, creep, shrinkage and thermal expansion of concrete upon aggregate volume concentration. Materials and Structures, 4(2), 107–114. Hobbs, D. (1971). The dependence of the bulk modulus, Young’s modulus, creep, shrinkage and thermal expansion of concrete upon aggregate volume concentration. Materials and Structures, 4(2), 107–114.
Zurück zum Zitat Hollick, J. (2012). Nocturnal radiation cooling tests. Energy Procedia, 30, 930–936.CrossRef Hollick, J. (2012). Nocturnal radiation cooling tests. Energy Procedia, 30, 930–936.CrossRef
Zurück zum Zitat Holman, J. (2009). Heat transfer (10th ed.). Boston: McGraw-Hill Education. Holman, J. (2009). Heat transfer (10th ed.). Boston: McGraw-Hill Education.
Zurück zum Zitat Honorio, T. (2015). Modelling concrete behaviour at early-age: Multiscale analysis and simulation of a massive disposal structure. Ph.D. thesis, ENS Cachan, Univeristé Paris-Saclay. Honorio, T. (2015). Modelling concrete behaviour at early-age: Multiscale analysis and simulation of a massive disposal structure. Ph.D. thesis, ENS Cachan, Univeristé Paris-Saclay.
Zurück zum Zitat Honorio, T., Bary, B., & Benboudjema, F. (2018). Thermal properties of cement-based materials: Multiscale estimations at early-age. Cement and Concrete Composites, 87, 205–219.CrossRef Honorio, T., Bary, B., & Benboudjema, F. (2018). Thermal properties of cement-based materials: Multiscale estimations at early-age. Cement and Concrete Composites, 87, 205–219.CrossRef
Zurück zum Zitat Jendele, L., Šmilauer, V., & Cervenka, J. (2014). Multiscale hydro–thermo–mechanical model for early-age and mature concrete structures. Advances in Engineering Software, 72, 134–146.CrossRef Jendele, L., Šmilauer, V., & Cervenka, J. (2014). Multiscale hydro–thermo–mechanical model for early-age and mature concrete structures. Advances in Engineering Software, 72, 134–146.CrossRef
Zurück zum Zitat Jensen, O. M., & Hansen, P. F. (1999). Influence of temperature on autogenous deformation and relative humidity change in hardening cement paste. Cement and Concrete Research, 29, 567–575.CrossRef Jensen, O. M., & Hansen, P. F. (1999). Influence of temperature on autogenous deformation and relative humidity change in hardening cement paste. Cement and Concrete Research, 29, 567–575.CrossRef
Zurück zum Zitat Jonasson, J.-E. (1994). Modelling of temperature, moisture and stress in young concrete. Ph.D. thesis, Luleå University of Technology, Luleå, Sweden. Jonasson, J.-E. (1994). Modelling of temperature, moisture and stress in young concrete. Ph.D. thesis, Luleå University of Technology, Luleå, Sweden.
Zurück zum Zitat Kada, H., Lachemi, M., Petrov, N., Bonneau, O., & Aitcin, P. C. (2002). Determination of the coefficient of thermal expansion of high performance concrete from initial setting. Materials and Structures, 35, 35–41.CrossRef Kada, H., Lachemi, M., Petrov, N., Bonneau, O., & Aitcin, P. C. (2002). Determination of the coefficient of thermal expansion of high performance concrete from initial setting. Materials and Structures, 35, 35–41.CrossRef
Zurück zum Zitat Khan, M. I. (2002). Factors affecting the thermal properties of concrete and applicability of its prediction models. Building and Environment, 37, 607–614.CrossRef Khan, M. I. (2002). Factors affecting the thermal properties of concrete and applicability of its prediction models. Building and Environment, 37, 607–614.CrossRef
Zurück zum Zitat Kim, K. H., Jeon, S. E., Kim, J. K., & Yang, S. (2003). An experimental study on thermal conductivity of concrete. Cement and Concrete Research, 33(3), 363–371.CrossRef Kim, K. H., Jeon, S. E., Kim, J. K., & Yang, S. (2003). An experimental study on thermal conductivity of concrete. Cement and Concrete Research, 33(3), 363–371.CrossRef
Zurück zum Zitat Klemczak, B. (2011). Prediction of coupled heat and moisture transfer in early-age massive concrete structures. Numerical Heat Transfer, Part A: Applications, 60, 212–233.CrossRef Klemczak, B. (2011). Prediction of coupled heat and moisture transfer in early-age massive concrete structures. Numerical Heat Transfer, Part A: Applications, 60, 212–233.CrossRef
Zurück zum Zitat Kodur, V. (2014). Properties of Concrete at Elevated Temperatures. ISRN Civil Engineering, 2014, 468510.CrossRef Kodur, V. (2014). Properties of Concrete at Elevated Temperatures. ISRN Civil Engineering, 2014, 468510.CrossRef
Zurück zum Zitat Kovler, K. (1995). Shock of evaporative cooling of concrete in hot dry climate. Concrete International, 17(10), 65–69. Kovler, K. (1995). Shock of evaporative cooling of concrete in hot dry climate. Concrete International, 17(10), 65–69.
Zurück zum Zitat Kovler, K., & Zhutovsky, S. (2006). Overview and future trends of shrinkage research. Materials and Structures, 39(9), 827–847.CrossRef Kovler, K., & Zhutovsky, S. (2006). Overview and future trends of shrinkage research. Materials and Structures, 39(9), 827–847.CrossRef
Zurück zum Zitat Kusuda, T. (1977). Fundamentals of building heat transfer. Journal of Research of the National Bureau of Standards, 82(2).CrossRef Kusuda, T. (1977). Fundamentals of building heat transfer. Journal of Research of the National Bureau of Standards, 82(2).CrossRef
Zurück zum Zitat Kwak, H.-G., Ha, S.-J., & Kim, J.-K. (2006). Non-structural cracking in RC walls. Part I: Finite element formulation. Cement and Concrete Research, 36, 749–760.CrossRef Kwak, H.-G., Ha, S.-J., & Kim, J.-K. (2006). Non-structural cracking in RC walls. Part I: Finite element formulation. Cement and Concrete Research, 36, 749–760.CrossRef
Zurück zum Zitat Lee, Y., Choi, M. S., Yi, S. T., & Kim, J. K. (2009). Experimental study on the convective heat transfer coefficient of early-age concrete. Cement and Concrete Composites, 31(1), 60–71.CrossRef Lee, Y., Choi, M. S., Yi, S. T., & Kim, J. K. (2009). Experimental study on the convective heat transfer coefficient of early-age concrete. Cement and Concrete Composites, 31(1), 60–71.CrossRef
Zurück zum Zitat Litovsky, E. Y., & Shapiro, M. (1992). Gas pressure and temperature dependences of thermal conductivity of porous ceramic materials: Part 1, Refractories and ceramics with porosity below 30%. Journal of American Ceramic Society, 75, 3425–3439.CrossRef Litovsky, E. Y., & Shapiro, M. (1992). Gas pressure and temperature dependences of thermal conductivity of porous ceramic materials: Part 1, Refractories and ceramics with porosity below 30%. Journal of American Ceramic Society, 75, 3425–3439.CrossRef
Zurück zum Zitat Liu, X., Jiang, W., de Schutter, G., Yuan, Y., & Su, Q. (2014). Early-age behaviour of precast concrete immersed tunnel based on degree of hydration concept. Structural Concrete, 15(1), 66–80.CrossRef Liu, X., Jiang, W., de Schutter, G., Yuan, Y., & Su, Q. (2014). Early-age behaviour of precast concrete immersed tunnel based on degree of hydration concept. Structural Concrete, 15(1), 66–80.CrossRef
Zurück zum Zitat Loser, R., Münch, B., & Lura, P. (2010). A volumetric technique for measuring the coefficient of thermal expansion of hardening cement paste and mortar. Cement and Concrete Research, 40(7), 1138–1147.CrossRef Loser, R., Münch, B., & Lura, P. (2010). A volumetric technique for measuring the coefficient of thermal expansion of hardening cement paste and mortar. Cement and Concrete Research, 40(7), 1138–1147.CrossRef
Zurück zum Zitat Lothenbach, B., Matschei, T., Möschner, G., & Glasser, F. P. (2008). Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement. Cement and Concrete Research, 38, 1–18.CrossRef Lothenbach, B., Matschei, T., Möschner, G., & Glasser, F. P. (2008). Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement. Cement and Concrete Research, 38, 1–18.CrossRef
Zurück zum Zitat Luca, J., & Mrawira, D. (2005). New measurement of thermal properties of superpave asphalt concrete. Journal of Materials in Civil Engineering, 17(1), 72–79.CrossRef Luca, J., & Mrawira, D. (2005). New measurement of thermal properties of superpave asphalt concrete. Journal of Materials in Civil Engineering, 17(1), 72–79.CrossRef
Zurück zum Zitat Lura, P., & Van Breugel, K. (2001). Thermal properties of concrete: sensitivity studies. Report: Improved Production of Advanced Concrete (IPACS). Lulea University of Technology. Lura, P., & Van Breugel, K. (2001). Thermal properties of concrete: sensitivity studies. Report: Improved Production of Advanced Concrete (IPACS). Lulea University of Technology.
Zurück zum Zitat Marshall, A. L. (1972). The thermal properties of concrete. Building Science, 7, 167–174.CrossRef Marshall, A. L. (1972). The thermal properties of concrete. Building Science, 7, 167–174.CrossRef
Zurück zum Zitat Maruyama, I., & Teramoto, A. (2011). Impact of time-dependant thermal expansion coefficient on the early-age volume changes in cement pastes. Cement and Concrete Research, 41, 380–391.CrossRef Maruyama, I., & Teramoto, A. (2011). Impact of time-dependant thermal expansion coefficient on the early-age volume changes in cement pastes. Cement and Concrete Research, 41, 380–391.CrossRef
Zurück zum Zitat Maruyama, I., & Teramoto, A. (2012). Effect of water-retaining lightweight aggregate on the reduction of thermal expansion coefficient in mortar subject to temperature histories. Cem Concr Compos, 34(10), 1124–1129.CrossRef Maruyama, I., & Teramoto, A. (2012). Effect of water-retaining lightweight aggregate on the reduction of thermal expansion coefficient in mortar subject to temperature histories. Cem Concr Compos, 34(10), 1124–1129.CrossRef
Zurück zum Zitat Matschei, T., Lothenbach, B., & Glasser, F. P. (2007). Thermodynamic properties of Portland cement hydrates in the system CaO–Al2O3–SiO2–CaSO4–CaCO3–H2O. Cement and Concrete Research, 37, 1379–1410.CrossRef Matschei, T., Lothenbach, B., & Glasser, F. P. (2007). Thermodynamic properties of Portland cement hydrates in the system CaO–Al2O3–SiO2–CaSO4–CaCO3–H2O. Cement and Concrete Research, 37, 1379–1410.CrossRef
Zurück zum Zitat McCarter, W. J., & Ben-Saleh, A. M. (2001). Influence of practical curing methods on evaporation of water from freshly placed concrete in hot climates. Built Environment, 36(8), 919–924.CrossRef McCarter, W. J., & Ben-Saleh, A. M. (2001). Influence of practical curing methods on evaporation of water from freshly placed concrete in hot climates. Built Environment, 36(8), 919–924.CrossRef
Zurück zum Zitat Mehta P, Monteiro P (2005) Concrete: Microstructure, Properties, and Materials. McGraw-Hill. Mehta P, Monteiro P (2005) Concrete: Microstructure, Properties, and Materials. McGraw-Hill.
Zurück zum Zitat Michell, D., & Biggs, K. L. (1979). Radiation cooling of buildings at night. Applied Energy, 5(4), 263–275.CrossRef Michell, D., & Biggs, K. L. (1979). Radiation cooling of buildings at night. Applied Energy, 5(4), 263–275.CrossRef
Zurück zum Zitat Mindess, S., Young, J. F., & Darwin, D. (2003). Concrete (2nd ed.). Upper Saddle River: Prentice-Hall. Mindess, S., Young, J. F., & Darwin, D. (2003). Concrete (2nd ed.). Upper Saddle River: Prentice-Hall.
Zurück zum Zitat Morabito, P. (1989). Measurement of the thermal properties of different concretes. High Temperatures High Pressures, 21(1), 51–59. Morabito, P. (1989). Measurement of the thermal properties of different concretes. High Temperatures High Pressures, 21(1), 51–59.
Zurück zum Zitat Mounanga, P., Khelidj, A., & Bastian, G. (2004). Experimental study and modelling approaches for the thermal conductivity evolution of hydrating cement paste. Advances in Cement Research, 16, 95–103.CrossRef Mounanga, P., Khelidj, A., & Bastian, G. (2004). Experimental study and modelling approaches for the thermal conductivity evolution of hydrating cement paste. Advances in Cement Research, 16, 95–103.CrossRef
Zurück zum Zitat Naik, T. R., Kraus, R. N., & Kumar, R. (2010). Influence of types of coarse aggregates on the coefficient of thermal expansion of concrete. Journal of Materials in Civil Engineering, 23(4), 467–472.CrossRef Naik, T. R., Kraus, R. N., & Kumar, R. (2010). Influence of types of coarse aggregates on the coefficient of thermal expansion of concrete. Journal of Materials in Civil Engineering, 23(4), 467–472.CrossRef
Zurück zum Zitat Neville, A. M. (1997). Properties of concrete (4th ed.). London, UK: Wiley. Neville, A. M. (1997). Properties of concrete (4th ed.). London, UK: Wiley.
Zurück zum Zitat Pomianowski, M., Heiselberg, P., Jensen, R. L., Cheng, R., & Zhang, Y. (2014). A new experimental method to determine specific heat capacity of inhomogeneous concrete material with incorporated microencapsulated-PCM. Cement and Concrete Research, 55, 22–34.CrossRef Pomianowski, M., Heiselberg, P., Jensen, R. L., Cheng, R., & Zhang, Y. (2014). A new experimental method to determine specific heat capacity of inhomogeneous concrete material with incorporated microencapsulated-PCM. Cement and Concrete Research, 55, 22–34.CrossRef
Zurück zum Zitat Radjy, F., Sellevold, E. J., & Hansen, K. K. (2003). Isosteric vapor pressure—Temperature data for water sorption in hardened cement paste: Enthalpy, entropy and sorption isotherms at different temperatures. Report BYG-DTU R-057. Lyngby: Technical University of Denmark. Radjy, F., Sellevold, E. J., & Hansen, K. K. (2003). Isosteric vapor pressure—Temperature data for water sorption in hardened cement paste: Enthalpy, entropy and sorption isotherms at different temperatures. Report BYG-DTU R-057. Lyngby: Technical University of Denmark.
Zurück zum Zitat Reinhardt, H.-W., Blauwendraad, J., & Jongendijk, J. (1982). Temperature development in concrete structures taking account of state dependent properties. In International Conference on Concrete at Early Ages, RILEM, Paris (pp. 211–218). Reinhardt, H.-W., Blauwendraad, J., & Jongendijk, J. (1982). Temperature development in concrete structures taking account of state dependent properties. In International Conference on Concrete at Early Ages, RILEM, Paris (pp. 211–218).
Zurück zum Zitat Rosen, B. W., & Hashin, Z. (1970). Effective thermal expansion coefficients and specific heats of composite materials. International Journal of Engineering Science, 8(2), 157–173.CrossRef Rosen, B. W., & Hashin, Z. (1970). Effective thermal expansion coefficients and specific heats of composite materials. International Journal of Engineering Science, 8(2), 157–173.CrossRef
Zurück zum Zitat de Schutter, G. (2002). Finite element simulation of thermal cracking in massive hardening concrete elements using degree of hydration based material laws. Computers & Structures, 80, 2035–2042.CrossRef de Schutter, G. (2002). Finite element simulation of thermal cracking in massive hardening concrete elements using degree of hydration based material laws. Computers & Structures, 80, 2035–2042.CrossRef
Zurück zum Zitat Ruiz, J., Schindler, A., Rasmussen, R., Kim, P., & Chang, G. (2001). Concrete temperature modeling and strength prediction using maturity concepts in the FHWA HIPERPAV software. In 7th International Conference on Concrete Pavements, Orlando (FL), USA, 2001. Ruiz, J., Schindler, A., Rasmussen, R., Kim, P., & Chang, G. (2001). Concrete temperature modeling and strength prediction using maturity concepts in the FHWA HIPERPAV software. In 7th International Conference on Concrete Pavements, Orlando (FL), USA, 2001.
Zurück zum Zitat Sellevold, E. J., & Bjøntegaard, Ø. (2006). Coefficient of thermal expansion of cement paste and concrete: Mechanisms of moisture interaction. Materials and Structures, 39, 809–815.CrossRef Sellevold, E. J., & Bjøntegaard, Ø. (2006). Coefficient of thermal expansion of cement paste and concrete: Mechanisms of moisture interaction. Materials and Structures, 39, 809–815.CrossRef
Zurück zum Zitat Tatro, S. B. (2006). Thermal properties. In J. F. Lamond & J. H. Pielert (Eds.), Significance of tests and properties of concrete and concrete-making materials, STP169D-EB (p. 2006). West Conshohocken, PA: ASTM International. Tatro, S. B. (2006). Thermal properties. In J. F. Lamond & J. H. Pielert (Eds.), Significance of tests and properties of concrete and concrete-making materials, STP169D-EB (p. 2006). West Conshohocken, PA: ASTM International.
Zurück zum Zitat Todd, S. (1951). Low-temperature heat capacities and entropies at 298.16 °K of crystalline calcium orthosilicate, zinc orthosilicate and tricalcium silicate. Journal of the American Chemical Society, 73, 3277–3278.CrossRef Todd, S. (1951). Low-temperature heat capacities and entropies at 298.16 °K of crystalline calcium orthosilicate, zinc orthosilicate and tricalcium silicate. Journal of the American Chemical Society, 73, 3277–3278.CrossRef
Zurück zum Zitat Ulm, F. J., & Coussy, O. (2001). What is a “massive” concrete structure at early ages? Some dimensional arguments. Journal of Engineering Mechanics, 127, 512–522.CrossRef Ulm, F. J., & Coussy, O. (2001). What is a “massive” concrete structure at early ages? Some dimensional arguments. Journal of Engineering Mechanics, 127, 512–522.CrossRef
Zurück zum Zitat Vargaftik, N. B. (1993) Handbook of thermal conductivity of liquids and gases. CRC Press. Vargaftik, N. B. (1993) Handbook of thermal conductivity of liquids and gases. CRC Press.
Zurück zum Zitat Wojcik, G. S. (2001). The interaction between the atmosphere and curing concrete bridge decks. Ph.D. thesis, State University of New York at Albany, Dissertation Abstracts International (Vol. 63-01, Section: B). Wojcik, G. S. (2001). The interaction between the atmosphere and curing concrete bridge decks. Ph.D. thesis, State University of New York at Albany, Dissertation Abstracts International (Vol. 63-01, Section: B).
Zurück zum Zitat Wojcik, G. S., Fitzjarrald, D. R., & Plawsky, J. L. (2003). Modelling the interaction between the atmosphere and curing concrete bridge decks with the SLABS model. Meteorological Applications, 10(2), 165–186.CrossRef Wojcik, G. S., Fitzjarrald, D. R., & Plawsky, J. L. (2003). Modelling the interaction between the atmosphere and curing concrete bridge decks with the SLABS model. Meteorological Applications, 10(2), 165–186.CrossRef
Zurück zum Zitat Wyrzykowski, M., & Lura, P. (2013a). Moisture dependence of thermal expansion in cement-based materials at early ages. Cement and Concrete Research, 53, 25–35.CrossRef Wyrzykowski, M., & Lura, P. (2013a). Moisture dependence of thermal expansion in cement-based materials at early ages. Cement and Concrete Research, 53, 25–35.CrossRef
Zurück zum Zitat Wyrzykowski, M., & Lura, P. (2013b). Controlling the coefficient of thermal expansion of cementitious materials—A new application for superabsorbent polymers. Cement and Concrete Composites, 35, 49–58.CrossRef Wyrzykowski, M., & Lura, P. (2013b). Controlling the coefficient of thermal expansion of cementitious materials—A new application for superabsorbent polymers. Cement and Concrete Composites, 35, 49–58.CrossRef
Zurück zum Zitat Xu, Y., & Chung, D. D. L. (2000). Effect of sand addition on the specific heat and thermal conductivity of cement. Cement and Concrete Research, 30, 59–61.CrossRef Xu, Y., & Chung, D. D. L. (2000). Effect of sand addition on the specific heat and thermal conductivity of cement. Cement and Concrete Research, 30, 59–61.CrossRef
Zurück zum Zitat Yeon, J. H., Choi, S., & Won, M. C. (2013). In situ measurement of coefficient of thermal expansion in hardening concrete and its effect on thermal stress development. Construction and Building Materials, 38, 306–315.CrossRef Yeon, J. H., Choi, S., & Won, M. C. (2013). In situ measurement of coefficient of thermal expansion in hardening concrete and its effect on thermal stress development. Construction and Building Materials, 38, 306–315.CrossRef
Zurück zum Zitat Yuan, Y., & Wan, Z. L. (2002). Prediction of cracking within early-age concrete due to thermal, drying and creep behavior. Cement and Concrete Research, 32, 1053–1059.CrossRef Yuan, Y., & Wan, Z. L. (2002). Prediction of cracking within early-age concrete due to thermal, drying and creep behavior. Cement and Concrete Research, 32, 1053–1059.CrossRef
Zurück zum Zitat Zreiki, J., Bouchelaghema, F., & Chaouchea, M. (2010). Early-age behaviour of concrete in massive structures—Experimentation and modelling. Nuclear Engineering and Design, 240, 2643–2654.CrossRef Zreiki, J., Bouchelaghema, F., & Chaouchea, M. (2010). Early-age behaviour of concrete in massive structures—Experimentation and modelling. Nuclear Engineering and Design, 240, 2643–2654.CrossRef
Zurück zum Zitat Zhutovsky, S., & Kovler, K. (2017). Application of ultrasonic pulse velocity for assessment of thermal expansion coefficient of concrete at early age. Materials and Structures, 50(5), 8. Zhutovsky, S., & Kovler, K. (2017). Application of ultrasonic pulse velocity for assessment of thermal expansion coefficient of concrete at early age. Materials and Structures, 50(5), 8.
Metadaten
Titel
Thermal Properties
verfasst von
Mateusz Wyrzykowski
Agnieszka Knoppik
Wilson R. Leal da Silva
Pietro Lura
Tulio Honorio
Yunus Ballim
Brice Delsaute
Stéphanie Staquet
Miguel Azenha
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-76617-1_3