Skip to main content

2007 | Buch

Anwendungstechnologie Aluminum

verfasst von: Professor Dr.-Ing. Friedrich Ostermann

Verlag: Springer Berlin Heidelberg

Buchreihe : VDI-Buch

insite
SUCHEN

Über dieses Buch

Das Wissen über Aluminium ist im letzten Jahrzehnt – dank des gestiegenen Interesses der Automobil- und Luftfahrtindustrie an diesem Leichtbauwerkstoff – enorm gewachsen. Neue Legierungen und differenziertere Behandlungsprozesse erweitern das Verarbeitungs- und Anwendungsspektrum.

Werkstoffgerechte Konstruktion und wirtschaftliche Verarbeitung setzen gründliche Kenntnisse der besonderen Gebrauchseigenschaften voraus. Ziel des Buches ist es, detaillierte Zusammenhänge zwischen Werkstoffwahl, Verarbeitungs- und Gebrauchseigenschaften zu vermitteln, um das erweiterte Anwendungspotenzial innovativ nutzen zu können.

Die nach fast 10 Jahren erscheinende, völlig neubearbeitete 2. Auflage enthält aktuelle Informationen über Legierungsentwicklungen, Werkstoffdaten und Normen. Das Werk eignet sich wegen seiner Stoff- und Datenfülle sowie zahlreicher Literaturquellen gleichermaßen als Lehrbuch und Nachschlagewerk für Ingenieure in der Forschung, Entwicklung und industriellen Praxis.

Inhaltsverzeichnis

Frontmatter
1. Einführung
Auszug
Aluminiumanwendungen findet man auf fast allen Gebieten der Wirtschaft und des modernen Lebens. Sie reichen von der Architektur über Verkehr, Maschinenbau, Elektrotechnik und Verpackung bis hin zu Freizeit und Sport, Unterhaltung und Kommunikation, Kunst und Kultur. Auf den meisten dieser Anwendungsgebiete steht Aluminium in direktem Wettbewerb mit anderen Werkstoffen und muß sich gegenüber technischen und wirtschaftlichen Herausforderungen dieser Konkurrenten behaupten. Gesicherter Erfolg wird nur beschert, wenn ein Anwendernutzen deutlich erkennbar ist. Neben ästhetischen Gründen, Langlebigkeit, Servicefreundlichkeit und wirkungsvoller Recyclingfähigkeit wird der Anwendernutzen vorrangig an der Wirtschaftlichkeit und Zuverlässigkeit der Produkte gemessen. Die Herausforderung besteht deshalb darin, angesichts eines gegenüber anderen Werkstoffen höheren Materialpreises dennoch zu wettbewerbsfähigen Lösungen zu kommen.
2. Märkte und Anwendungen
Auszug
Die wichtigen Märkte in Deutschland und Europa mit ihren Mengenanteilen am Aluminiumverbrauch1 gehen aus Tabelle 2.1. hervor. Analysiert man den Werkstoffeinsatz in diesen Märkten, fällt auf, daß im Transport- und Verkehrssektor, im Bauwesen sowie im Maschinenbau ein hoher Anteil des Aluminiumeinsatzes auf konstruktive, strukturelle Anwendungen entfällt mit entsprechenden hohen Anforderungen an Tragfähigkeit, Sicherheit und Langlebigkeit. Hier sind in besonderem Maße Kenntnisse der Aluminium-Anwendungstechnologie gefordert.
3. Legierungsaufbau, Wärmebehandlung, Normen
Auszug
Legierungsaufbau und Wärmebehandlung sind zunehmend wichtige Themenbereiche für den Fertigungstechniker und Konstrukteur, um das Potential des Werkstoffs Aluminium in der Verarbeitung und Anwendung differenzierter auszuschöpfen, als die Verwendung herkömmlicher Halbzeug- und Legierungszustände gewöhnlich ermöglicht. Solche Themen betreffen u.a. die beschleunigte Warmaushärtungskinetik, verbessertes Festigkeitsniveau nach Warmaushärtung, gleichbleibende Eigenschaften bei der Lagerung zwischen Anlieferung und Verarbeitung, Rückbildung der Kalt- oder Warmaushärtung zum Zwecke besserer Umformbarkeit. Durch gezielte Wärmebehandlungen im Fertigungsablauf können die Verarbeitbarkeitsgrenzen des Ausgangswerkstoffs und seines Werkstoffzustandes erweitert werden. Neuere Legierungsentwicklungen und Vorbehandlungen ermöglichen die Verkürzung von langen Wärmebehandlungszeiten, so daß solche Prozesse heute auch in mechanisierte Fertigungsabläufe integriert werden können.
4. Physikalische Eigenschaften
Auszug
Die physikalischen Eigenschaften des Aluminiums sind neben der schützenden Oxidschicht die eigentliche Grundlage seiner ungewöhnlich vielfältigen Verwendbarkeit. Wenn aus der Sicht des Konstrukteurs vor allem die geringe Dichte des Werkstoffs heraussteht, so sind — häufig unbewußt — verschiedene weitere physikalische Eigenschaften maßgebend an der Produktqualität oder Funktionsweise beteiligt.
5. Korrosionsverhalten von Aluminium
Auszug
Mit dem Begriff Korrosion bezeichnet man die chemische Reaktion metallischer Werkstoffe mit ihrer Umgebung. Mit Ausnahme der Edelmetalle sind alle Metalle solchen chemischen Reaktionen ausgesetzt und verändern dadurch ihre Oberfläche. Ein Korrosionsschaden ist nach DIN EN ISO 8044:1999 jedoch nur dann eingetreten, wenn die Korrosionserscheinungen zu einer Beeinträchtigung der Funktion des Bauteils geführt haben. Im allgemeinen handelt es sich beim Korrosionsprozeß um örtlichen oder flächenhaften Angriff der Metalloberfläche in aggressiver feuchter Umgebung oder in wäßrigen Medien, denen das Bauteil ständig oder zeitweise ausgesetzt ist. DIN EN ISO 8044:1999 weist daraufhin, daß die Bemühungen darauf gerichtet sein sollen, nicht die Korrosion selbst — was in vielen Fällen nicht möglich ist —, sondern einen Korrosionsschaden durch vorsorglichen Korrosionsschutz zu verhindern. Zu den Aufgaben des Korrosionsschutzes gehört es, das Korrosionsverhalten des Werkstoffs und Bauteils in seinem Anwendungsbereich und über seiner Gebrauchsdauer zu ermitteln und die entsprechenden Maßnahmen hinsichtlich der Wahl eines Werkstoffs, seiner Behandlung sowie der konstruktiven und fertigungstechnischen Verarbeitung unter dem Gesichtspunkt des Korrosionsschutzes zu ergreifen.
6. Mechanische Eigenschaften
Auszug
Bei der Wahl der Legierung und der Halbzeugart für den jeweiligen Anwendungsfall sind neben der Beurteilung der Verarbeitungseigenschaften, wie Verformbarkeit, Schweißbarkeit und Zerspanbarkeit, sowie des Korrosionsverhaltens unter den beabsichtigten Einsatzbedingungen vor allem die Kenntnis der Festigkeits- und Duktilitätseigenschaften von Bedeutung. Die letzteren beiden Eigenschaften bestimmen sowohl die Auslegung des Bauteils als auch das Umformverhalten und das Verhalten unter Mißbrauch und Crash.
7. Gießverfahren
Auszug
Der Weg von der Schmelze zum Knetmaterial oder Formgußteil basiert auf grundlegend verschiedenen Gießmethoden. Vormaterial für das Walzen, Strangpressen oder Schmieden wird heute überwiegend mit dem halbkontinuierlichen „Wasserguß“-Stranggießverfahren hergestellt. Für die Herstellung von Kaltwalzband und Drahtvormaterial werden zudem kontinuierlich arbeitende Bandgießanlagen verwendet. Aluminiumformgußteile werden dagegen mit zahlreichen unterschiedlichen Gießverfahren hergestellt, die z.T. durch firmenspezifische Varianten noch bereichert werden. Die mit diesen Verfahren herstellbaren Legierungen unterliegen z.T. verfahrensbedingten Einschränkungen. Die Formgießverfahren unterscheiden sich darüber hinaus in Bezug auf Gestaltungsfreiheit, Mindestwanddicke, Gefügequalität, Serientauglichkeit und Wirtschaftlichkeit. Im folgenden werden die wichtigsten Gießverfahren kurz erläutert und mit einem Verfahrensvergleich abgeschlossen.
8. Walzen
Auszug
Fast alle gewalzten Flachprodukte müssen durch Trenn-, Umform-, Füge- und Oberflächenbehandlungsverfahren bearbeitet werden, um zu einem gebrauchstauglichen Endprodukt zu werden. Dabei spielen die Werkstoffeigenschaften eine herausragende Rolle, die jedoch maßgeblich durch den Walzprozeß bestimmt werden. Aus anwendungstechnischer Sicht ist daher ein Grundverständnis für den Walzprozeß notwendig.
9. Strangpressen
Auszug
Neben dem Formgießen ist das Strangpressen das wirtschaftlichste Formgebungsverfahren für Aluminium. Kein anderer Konstruktionswerkstoff kann durch Strangpressen so günstig und in so komplexe Querschnittsformen geformt werden wie Aluminium und seine Legierungen. Die Gestaltungsgrenzen werden jedoch beeinflußt durch
  • die Wahl der Legierung (Fließvermögen beim Strangpressen)
  • die verfügbare Preßkraft und Auslegung der Strangpresse
  • werkzeugtechnische Gesichtspunkte (Voll- und Hohlprofile) und
  • wirtschaftliche Überlegungen (Ausbringung, Menge).
Die Herausforderung besteht für den Konstrukteur darin, möglichst viele Funktionen durch Integration geeigneter Formenelemente in einem Querschnitt zu vereinigen, um Fertigungsschritte und Fügeoperationen zu vermeiden. In diesem Sinne kann das Strangpressen unter die „near net shape“-Verfahren eingereiht werden.
10. Schmieden von Aluminium
Auszug
Gesenkschmiedeteile aus Aluminiumknetlegierungen werden in der Luftfahrt, im Fahrzeugbau und in vielen anderen Gebieten des Maschinenbaus vor allem in solchen Anwendungsfällen verwendet, bei denen ein Höchstmaß an Sicherheit gegen Versagen durch Mißbrauch, durch Stoßbelastung und durch schwingende Beanspruchung gewährleistet sein muß. Im Automobilsektor zählen hierzu Fahrwerksteile - wie Räder, Querlenker, Längslenker, Achslager und Naben-, Lenkungs- und Bremsteile. Die hohe Bauteilintegrität wird beim Gesenkschmieden dadurch erzielt, daß durch den Materialfluß im Gesenk ein dichtes Fasergefüge entsteht, das bei richtiger Auslegung des Schmiedeteils, des Gesenks und des Schmiedeprozesses höchste mechanische Eigenschaften in Richtung der Hauptbeanspruchungen besitzt. Festigkeit, Bruchdehnung, Zähigkeit und Schwingfestigkeit sind bei Beanspruchung in der Faserrichtung am höchsten. Beispiele für Anwendungen im Fahrzeugbau finden sich in den Bildern 2.1.12 und 2.1.13.
11. Kaltfließpressen von Aluminium
Auszug
Das Kaltfließpressen von Aluminium und Aluminiumlegierungen ist aus umformtechnischer und aus anwendungstechnischer Sicht eine hochinteressante Fertigungstechnik mit drei wesentlichen Merkmalen; (1) die große Formenvielfalt, s. Bild 11.1.1, (2) die nahezu endkonturgenaue Fertigung von Funktionsflächen und (3) das hohe Ausbringungsverhältnis (häufig mehr als 85%) von Einsatzgewicht zu Fertigteilgewicht. Obwohl die Mehrheit der Produktion den Bereich Tuben und Dosen bedient, sind besonders die Herstellmöglichkeiten technischer Fließpreßteile für Anwendungen in der Fahrzeug-, Elektro- und Maschinenbautechnik interessant. Bild 11.1.2 zeigt als technisch anspruchsvolles Beispiel die Sicherheitslenksäulen für den PKW-Bau sowie Anwendungsbeispiele aus dem Bereich der Elektrotechnik.
12. Aluminiumblechumformung
Auszug
Im Unterschied zur Massivumformung hat die Blechumformung zum Ziel, aus einem Flachprodukt ein räumliches Gebilde herzustellen, ohne die Blechdicke wesentlich zu verändern. Die Formänderung findet daher primär in der Blechebene unter ebenem Spannungszustand statt.
13. Sondergebiete der Umformtechnik
Auszug
Als Sondergebiete der Weiterverarbeitung von Aluminium und seinen Legierungen werden im folgenden einerseits die Bearbeitung von Profilen und Rohren zu räumlich geformten Bauteilen und andererseits solche Verfahren behandelt, die durch die speziellen Umformbedingungen besonders hohe Umformgrade ermöglichen. Hierzu gehören die Halbwarmumformung und die superplastische Umformung. Die unter der Bezeichnung „Severe Plastic Deformation — SPD“ in jüngster Zeit bekannt gewordenen Prozesse eröffnen zwar ein Potential an neuartigen Gefügedimensionen, s. Abschn. 3.1.3, sind aber für praktische Anwendungen noch nicht genügend entwickelt und daher nicht Gegenstand der folgenden Betrachtungen.
14. Spanende Formgebung von Aluminium
Auszug
Aluminiumwerkstoffe haben allgemein eine ausgezeichnete Zerspanbarkeit:
  • vergleichsweise geringe Schnittkräfte (400–700 N/mm2 im Vergleich zu 1500–2500 N/mm2 für Stahlwerkstoffe)
  • hohe Werkzeugstandzeiten
  • hohe Produktivität durch hohe Schnittgeschwindigkeiten.
Die Entwicklung der Hochgeschwindigkeitszerspanung (HSC, HPC, HSM)1 hat gerade für die Aluminiumbearbeitung eine große wirtschaftliche Bedeutung erlangt, z. B. im Flugzeugbau, im Formen- und Werkzeugbau, in der Bearbeitung von Formgußteilen im Motoren- und Getriebebau sowie im Maschinenbau. Beispiele s. Bilder 2.5.3, 2.7.2 und 14.0.1.
15. Oberflächenbehandlung
Auszug
Unter dem Begriff Oberflächenbehandlung werden Techniken und Verfahren zur Reinigung und zur Veränderung der mechanischen, chemischen und physikalischen Oberflächeneigenschaften des Grundwerkstoffs gegenüber dem Herstellungszustand (Halbzeug, Guß) zusammengefaßt.
16. Schmelzschweißen von Aluminium
Auszug
Das Schmelzschweißen von Aluminiumbauteilen gehört zu den Schlüsseltechnologien der Fertigungstechnik. Der Einsatz des Lichtbogenschweißens von Aluminium unter Schutzgas begann in Deutschland vor gut fünfzig Jahren und hat heute das ältere Gasschmelzschweißen in der industriellen Fertigung aus Qualitäts- und Produktivitätsgründen vollständig verdrängt. Die Entwicklung der mechanisierten Lichtbogenschweißtechnik für Aluminium hat in Verbindung mit der Strangpreßprofilbauweise den Durchbruch der modernen Aluminiumleichtbauweise bei Nahverkehrsund Hochgeschwindigkeits-Schienenfahrzeugen möglich gemacht. Die gleiche große Bedeutung hat die Aluminiumschweißtechnik aktuell für den Leichtbau von Personenkraftwagen, Nutzfahrzeugen und schnellen Katamaranschiffen, sowie für die Offshore-Technik erlangt und wird künftig auch den Flugzeugbau erobern. Insbesondere der im vergangenen Jahrzehnt erheblich gewachsene Einsatz von Aluminium in Strukturkomponenten des bisher stahldominierten PKW-Baus hat der Entwicklung der Aluminiumschweißtechnik entscheidende Impulse gegeben. Die dadurch ausgelöste Weiterentwicklung der Schutzgas-Lichtbogenschweißverfahren, Laserstrahl- und Elektronenstrahlverfahren sowie die Kombination von verschiedenartigen Schweißverfahren zu Hybridverfahren haben in neuerer Zeit die Einsatzbereiche, Verbindungsqualität und Wirtschaftlichkeit des Schmelzschweißens von Aluminiumknet- und Gußlegierungen erweitert und verbessert.
17. Widerstandsschweißen
Auszug
Das Widerstandsschweißen gehört zu den stoffschlüssigen Verbindungsverfahren, bei denen der Stoffschluß an den Verbindungsstellen durch einen örtlichen Schmelz- und Erstarrungsvorgang erzeugt wird. Aus metallurgischer Sicht muß das Widerstandsschweißen streng genommen den Schmelzschweißverfahren zugeordnet werden. Zu den bei Aluminium und seinen Legierungen praktizierten Widerstandsschweißverfahren zählen Punktschweißen, Buckelschweißen, Rollennahtschweißen und Abbrennstumpfschweißen. Von den Widerstandsschweißverfahren ist das Widerstandspunktschweißen das für die Blechverarbeitung wichtigste Verfahren und steht im Mittelpunkt der folgenden Betrachtungen. Seine Bedeutung im Karosseriebau ist durch die Entwicklung und fertigungstechnische Automatisierung der mechanischen Fügetechnik in der Vergangenheit zurückgegangen, da die Elektrodenstandzeit für eine automatisierte Fertigungsweise unzureichend war. U.a. scheinen aber neuere Entwicklungen wie Kupferbandelektroden eine Neubewertung einzuleiten.
18. Mechanisches Fügen
Auszug
Mechanisches Fügen von Bauteilen gehört zu den ältesten Verbindungstechniken in der handwerklichen und industriellen Fertigungstechnik (Grandt 1994). In den vergangenen 30 Jahren haben allerdings eben diese Fügetechniken eine erstaunliche Entwicklung durchgemacht. Sie wurden zunehmend interessant dadurch, daß die thermischen, stoffschlüssigen Fügeverfahren (Lichtbogenschweißen, Widerstandsschweißen, Löten, Kleben) bezüglich der hohen Ansprüche an Wirtschaftlichkeit und Prozeßsicherheit bei Leichtmetallen in der Großserienfertigung Probleme bereiteten und beschichtete Materialien sowie Mischmetallverbindungen an Interesse gewannen. Auch stellte sich heraus, daß mechanische Verbindungen häufig bezüglich der Schwingfestigkeitseigenschaften den stoffschlüssigen Verbindungen überlegen waren, selbst wenn die statischen Festigkeitseigenschaften pro Fügestelle geringer waren. Forschung und Entwicklung auf dem Gebiet der mechanischen Fügetechnik hat das Angebot an Verfahren und Verfahrensvarianten erheblich verbreitert und die Prozeßtechnik soweit verfeinert, daß eine Reihe von mechanischen Fügetechniken als prozeßsichere Fertigungstechnik einen festen Platz in der mechanisierten Großserienfertigung, aber auch in der handwerklichen Einzel-bzw. Kleinserienfertigung erobern konnte.
19. Sonderverfahren der Fügetechnik
Auszug
Das noch relativ junge Rührreibschweißen (Friction Stir Welding) (Thomas et al. 1992) findet bereits zahlreiche Anwendungen in der industriellen Praxis. FSW bietet gerade in der Aluminiumverarbeitung Lösungen für bisherige Verbindungsprobleme und hat eine große Zahl von Forschungs- und Entwicklungsprojekten angeregt. Die stoffschlüssigen FSW-Verbindungen ohne Zusatzwerkstoffe haben eine hohe Qualität und Zuverlässigkeit und können selbst mit solchen Legierungen hergestellt werden, die beim Schmelzschweißen zu Schweißrissigkeit neigen. Neben hochfesten Aluminiumknetlegierungen wurden erfolgreich auch Gußlegierungen und selbst Aluminium/C-Stahl-Verbunde hergestellt. Die Anwendungsgrenzen des Verfahrens liegen in der notwendigen maschinellen Einrichtung und festen Einspannung, die für viele Fügeaufgaben nicht geeignet sind.
20. Einführung in das Konstruieren mit Aluminium
Auszug
Das Ziel dieses Kapitels ist, einige Hinweise auf die Besonderheiten des Aluminiums zu geben, die bei der Gestaltung und beim Auslegen einer Leichtbaukonstruktion berücksichtigt werden sollten. Dabei wird die Beherrschung der allgemeinen Instrumentarien der Konstruktion und Berechnung im Maschinenbau bzw. im konstruktiven Ingenieurbau (Stahlbau) vorausgesetzt. Diese Instrumentarien beruhen jedoch weitgehend auf den Erfahrungen mit Stahlwerkstoffen und deshalb führt ihre Anwendung ohne die Berücksichtigung der speziellen Besonderheiten des Aluminiums eher zu einer Stahlkonstruktion aus Aluminium als zu einer eigenständigen Aluminiumkonstruktion.
21. Sonderwerkstoffe
Auszug
Die nachfolgend betrachteten Sonderwerkstoffe sind in ihrer wirtschaftlichen Bedeutung heute noch nicht mit den Knet- und Gußwerkstoffen zu vergleichen. Sie werden hier mit einführenden Informationen behandelt, um werkstoffliche Perspektiven aufzuzeigen, die Aluminium auch für besondere Herausforderungen — höhere Festigkeiten, höchste Warmfestigkeiten, geringeres Gewicht und verbesserte Aufprallenergieabsorption — geeignet erscheinen lassen und die unter Umständen sogar eine wirtschaftlichere Leichtbaulösung ermöglichen.
22. Gewinnung, Recycling, Ökologie
Auszug
Aluminium ist nach Sauerstoff und Silizium das dritthäufigste Element der Erdrinde und an ihrem Aufbau mit ca. 8 % beteiligt, s. Tabelle 22.1.1 (Budd 1994). Wegen seiner starken Neigung, mit Nichtmetallen — vor allem mit Sauerstoff — zu reagieren, kommt Aluminium in der Natur nicht in metallischer Form, sondern nur in Verbindungen vor.
Backmatter
Metadaten
Titel
Anwendungstechnologie Aluminum
verfasst von
Professor Dr.-Ing. Friedrich Ostermann
Copyright-Jahr
2007
Verlag
Springer Berlin Heidelberg
Electronic ISBN
978-3-540-69451-9
Print ISBN
978-3-540-23882-9
DOI
https://doi.org/10.1007/978-3-540-69451-9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.