Skip to main content

2010 | OriginalPaper | Buchkapitel

15. Stabilitätsanalyse

verfasst von : Dr. Martin Treiber, Dr. Arne Kesting

Erschienen in: Verkehrsdynamik und -simulation

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Zusammenfassung

Instabilitäten und in der Folge Stauwellen entstehen durch Reaktionszeiten der Fahrer sowie durch die endliche Beschleunigungs- und Bremsfähigkeit der Fahrzeuge. Beides führt zu einer verzögerten Anpassung der Geschwindigkeit an die Zielgeschwindigkeit, die bei hinreichend großem Verkehrsaufkommen zu einem „Teufelskreis“ führen kann. Dieser wird zunächst anhand der Abb. 15.1 anschaulich erklärt (vgl. auch Abb. 15.4):

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Insbesondere gibt es sowohl bei den numerischen als auch bei den hier behandelten physikalischen Instabilitäten sogenannte „konvektive Instabilitäten“ (Abschn.​ 9.​5 bzw. 15.5) , die keinerlei Beziehung zueinander haben.
 
2
Zumindest solange der Ausstattungsgrad dieser Systeme klein bleibt. Ansonsten ist auch Kolonnenstabilität wichtig.
 
3
Einige Autoren unterscheiden zwar die mikroskopische string stability von der makroskopischen flow stability, doch das ist eine Konsequenz nicht perfekter Übereinstimmungen der verwendeten mikroskopischen und makroskopischen Modelle. Konzeptionell gibt es keinerlei Unterschied. Man kann sogar umgekehrt als notwendige Bedingung für die dynamische Åquivalenz zwischen Mikro- und Makromodellen fordern, dass string und flow stability äquivalent sind, also dieselben Stabilitätsgrenzen aufweisen.
 
4
Auch in Verkehrsflussmodellen sind sich in Flussrichtung ausbreitende konvektive Instabilitäten möglich. Sobald jedoch die Amplitude der Instabilität hinreichend groß wird, führen Nichtlinearitäten zu einer Umkehr der Ausbreitungsrichtung. Im Ergebnis ist dieser Typ der konvektiven Instabilität nicht robust und damit für die Verkehrsdynamik nicht relevant.
 
5
Dies gilt sogar allgemeiner für jeden festen Ort x.
 
6
Auf Multi-Antizipation wird nur der Übersichtlichkeit halber verzichtet. Man kann die komplette Stabilitätsanalyse auch mit Berücksichtigung zusätzlicher Vorder- und auch Folgefahrzeuge ausgehend von Gl. (12.19) durchführen. Die erforderlichen Verallgemeinerungen sind offensichtlich.
 
7
Der Fahrzeugindex steigt entgegen der Fahrtrichtung, deshalb dreht sich das Vorzeichen um.
 
8
Andernfalls lässt sich der Fouriermoden-Ansatz nicht durchführen.
 
9
Ansonsten können keine Instabilitäten auftreten.
 
10
Auch ein Indiz dafür, dass es sehr lange dauern kann, bis aus einer Störung ein richtiger Stau entsteht.
 
11
Anstelle der Simulation bei kleiner Störung kann man natürlich die analytischen Ergebnisse heranziehen. Es bietet sich aber an, durch Vergleich der analytischen und numerischen Resultate die Simulation (und die Annahmen hinter den analytischen Formeln) zu testen.
 
12
Dazu benötigt man theoretisch einen unendlichen Umfang des Rings. In der Praxis muss der Umfang so groß sein, dass während der Simulationszeit kein Fahrzeug um das System fahren kann.
 
13
In einem engen Parameterbereich ist ein an beiden Seiten von konvektiver Instabilität eingebetteter Dichtebereich absoluter Instabilität möglich.
 
14
Es ist allerdings schwierig, Modelle und Parameterkombinationen zu finden, die absolut stabile und metastabile, nicht aber instabile Bereiche enthalten.
 
15
Es ändert sich allerdings nichts an der Restabilisierung, die nicht von b abhängt: Gilt \(a \ge s_0/T^2\), so fällt das Modell in eine der Klassen 1b, 2b oder 3, ansonsten in die Klassen 1a oder 2a.
 
Literatur
Zurück zum Zitat Wilson, R.: Mechanisms for spatio-temporal pattern formation in highway traffic models. Philos. Trans. R. Soc. A 366, 2017–2032 (2008)ADSMATHCrossRef Wilson, R.: Mechanisms for spatio-temporal pattern formation in highway traffic models. Philos. Trans. R. Soc. A 366, 2017–2032 (2008)ADSMATHCrossRef
Zurück zum Zitat Huerre, P., Monkewitz, P.: Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473–537 (1990) 473–537MathSciNetADSCrossRef Huerre, P., Monkewitz, P.: Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473–537 (1990) 473–537MathSciNetADSCrossRef
Metadaten
Titel
Stabilitätsanalyse
verfasst von
Dr. Martin Treiber
Dr. Arne Kesting
Copyright-Jahr
2010
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-05228-6_15