Skip to main content

2010 | Buch

Nondestructive Evaluation of Food Quality

Theory and Practice

herausgegeben von: Shyam N. Jha

Verlag: Springer Berlin Heidelberg

insite
SUCHEN

Über dieses Buch

Numerous works on non-destructive testing of food quality have been reported in the literature. Techniques such as Near InfraRed (NIR) spectroscopy, color and visual spectroscopy, electronic nose and tongue, computer vision (image analysis), ultrasound, x-ray, CT and magnetic resonance imaging are some of the most applied for that purpose and are described in this book. Aspects such as theory/basics of the techniques, practical applications (sampling, experimentation, data analysis) for evaluation of quality attributes of food and some recent works reported in literature are presented and discussed. This book is particularly interesting for new researchers in food quality and serves as an updated state-of-the-art report for those already familiar with the field.

Inhaltsverzeichnis

Frontmatter
Chapter 1. Food Quality and Safety: An Overview
Abstract
Food quality and safety is the foremost issue amongst the present days’ consumers. Fresh fruits and vegetables are often thought of as healthful, nutritious foods having no risk of food borne illness associated with their consumption. However recent food borne illness outbreaks in countries have been traced to fresh fruits, vegetables, juices and milk. These incidences have caused producers, processors, transporters, distributors, and importers to re-evaluate quality of their fresh fruits and vegetables produce and identify the hazardous points such as production, handling and processing systems to prevent any food borne diseases.
Shyam N. Jha
Chapter 2. Colour Measurements and Modeling
Abstract
The most common property to measure quality of any material is its appearance. Appearance includes colour, shape, size and surface conditions. The analysis of colour is especially an important consideration when determining the efficacy of variety of postharvest treatments. Consumers can easily be influenced by preconceived ideas of how a particular fruit or vegetable or a processed food should appear, and marketers often attempt to improve upon what nature has painted. Recently colour measurements have also been used as quality parameters and indicator of some inner constituents of the material. In spite of the significance of colour in food industries, many continue to analyze it inadequately. This chapter deals with theory of colour, colour scales and its measurement, sampling techniques, and modeling of colour values for correlating them with some internal quality parameters of selected fruits.
Shyam N. Jha
Chapter 3. Computer Vision Systems
Abstract
Food quality is of paramount consideration for all consumers, and its importance is perhaps only second to food safety. By some definition, food safety is also incorporated into the broad categorization of food quality. Hence, the need for careful and accurate evaluation of food quality is at the forefront of research and development both in the academia and industry. Among the many available methods for food quality evaluation, computer vision has proven to be the most powerful, especially for nondestructively extracting and quantifying many features that have direct relevance to food quality assessment and control. Furthermore, computer vision systems serve to rapidly evaluate the most readily observable foods quality attributes – the external characteristics such as color, shape, size, surface texture etc. In addition, it is now possible, using advanced computer vision technologies, to “see” inside a food product and/or package to examine important quality attributes ordinarily unavailable to human evaluators. With rapid advances in electronic hardware and other associated imaging technologies, the cost-effectiveness and speed of computer vision systems have greatly improved and many practical systems are already in place in the food industry.
Sundaram Gunasekaran
Chapter 4. Electronic Nose and Electronic Tongue
Abstract
Human beings have five senses, namely, vision, hearing, touch, smell and taste. The sensors for vision, hearing and touch have been developed for several years. The need for sensors capable of mimicking the senses of smell and taste have been felt only recently in food industry, environmental monitoring and several industrial applications. In the ever-widening horizon of frontier research in the field of electronics and advanced computing, emergence of electronic nose (E-Nose) and electronic tongue (E-Tongue) have been drawing attention of scientists and technologists for more than a decade. By intelligent integration of multitudes of technologies like chemometrics, microelectronics and advanced soft computing, human olfaction has been successfully mimicked by such new techniques called machine olfaction (Pearce et al. 2002). But the very essence of such research and development efforts has centered on development of customized electronic nose and electronic tongue solutions specific to individual applications. In fact, research trends as of date clearly points to the fact that a machine olfaction system as versatile, universal and broadband as human nose and human tongue may not be feasible in the decades to come. But application specific solutions may definitely be demonstrated and commercialized by modulation in sensor design and fine-tuning the soft computing solutions. This chapter deals with theory, developments of E-Nose and E-Tongue technology and their applications. Also a succinct account of future trends of R&D efforts in this field with an objective of establishing co-relation between machine olfaction and human perception has been included.
Nabarun Bhattacharyya, Rajib Bandhopadhyay
Chapter 5. Radiography, CT and MRI
Abstract
Quality control is an important aspect of food production and processing providing foods of acceptable nutritional value, and safety of products. Several characteristics such as size, shape, density, maturity, moisture content, oil content, flavor, firmness, tenderness, color, defects, blemishes, etc., are routinely used in the quality control of agricultural and biological food products. Until recently, most analytical techniques used in quality control required isolation of the food component of interest. The original properties of the product are, therefore, destroyed during sample preparation and analysis. Oftentimes, such analyses are expensive, time consuming, and require sophisticated instrumentation, and hence are not suited for “on-line” quality control of food products. Recent progress in the development of instrumentation utilizing the some physical, optical, acoustic and electromagnetic properties of food products has provided several nondestructive techniques for quality evaluation. Many such methods are highly sensitive, rapid, and reproducible, and have been successively used in routine “on-line” quality control of a large number of samples.
Nachiket Kotwaliwale, Abhimannyu Kalne, Karan Singh
Chapter 6. Near Infrared Spectroscopy
Abstract
The discovery of near-infrared energy is ascribed to Herschel in the nineteenth century; the first industrial application however began in the 1950s. Initially near infrared spectroscopy (NIRS) was used only as an add-on unit to other optical devices, that used other wavelengths such as ultraviolet (UV), visible (Vis), or mid-infrared (MIR) spectrometers. In the 1980s, a single unit, stand-alone NIRS system was made available, but the application of NIRS was focused more on chemical analysis. With the introduction of light-fibre optics in the mid 1980s and the monochromator-detector developments in early 1990s, NIRS became a more powerful tool for scientific research. This optical method can be used in a number of fields of science including physics, physiology, medicine and food.
Shyam N. Jha
Chapter 7. Ultrasonic Technology
Abstract
Ultrasonic has proven its merit as one of the most promising sensing methods for food quality evaluation due to its non-destructive, noninvasive, precise, rapid, and on-line potential. Ultrasonic is mechanical wave at frequencies above 20 kHz propagating by vibration of the particles in the medium and penetrating through optically opaque materials to provide internal or surface information of physical attributes, such as texture and structure. Ultrasonic non-destructive testing is a way of characterizing materials by transmitting ultrasonic waves into a material, and investigating the characteristics of the transmitted and/or reflected ultrasonic waves. For the purpose of quality measurement of materials, low-intensity ultrasonic with the power level of up to 1 W/cm2 has been used. The low-intensity ultrasonic doesn’t cause physical or chemical changes in the properties of the specimen when it transmits through the material. However, high-intensity ultrasonic of the power range above 1 W/cm2 may produce physical/chemical disruption and alteration in the material through which the wave propagates. High-intensity ultrasonic is usually used in cleaning, promotion of chemical reactions, homogenization, etc
Byoung-Kwan Cho
Chapter 8. Miscellaneous Techniques
Abstract
Nondestructive way of determining the food quality is the need of the hour. Till now major methods such as colour measurements and their modeling; machine vision systems; X-ray, CT and MRI; NIR spectroscopy; electronic nose and tongue; and ultrasonic technology have been discussed in detail. These techniques, in general, are considered to be sophisticated and costly, and therefore probably are not being adopted as fast as it should be. I am however of the reverse opinion. While going through these techniques, it has been seen that majority of quality parameters have been measured and correlated with the signals obtained using different equipment.
Shyam N. Jha
Backmatter
Metadaten
Titel
Nondestructive Evaluation of Food Quality
herausgegeben von
Shyam N. Jha
Copyright-Jahr
2010
Verlag
Springer Berlin Heidelberg
Electronic ISBN
978-3-642-15796-7
Print ISBN
978-3-642-15795-0
DOI
https://doi.org/10.1007/978-3-642-15796-7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.