Skip to main content

2013 | OriginalPaper | Buchkapitel

6. Stochastic Partial Differential Equations in Neurobiology: Linear and Nonlinear Models for Spiking Neurons

verfasst von : Henry C. Tuckwell

Erschienen in: Stochastic Biomathematical Models

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Stochastic differential equation (SDE) models of nerve cells for the most part neglect the spatial dimension. Including the latter leads to stochastic partial differential equations (SPDEs) which allow for the inclusion of important variations in the densities of ion channels. In the first part of this work, we briefly consider representations of neuronal anatomy in the context of linear SPDE models on line segments with one and two components. Such models are reviewed and analytical methods illustrated for finding solutions as series of Ornstein–Uhlenbeck processes. However, only nonlinear models exhibit natural spike thresholds and admit traveling wave solutions, so the rest of the article is concerned with spatial versions of the two most studied nonlinear models, the Hodgkin–Huxley system and the FitzHugh–Nagumo approximation. The ion currents underlying neuronal spiking are first discussed and a general nonlinear SPDE model is presented. Guided by recent results for noise-induced inhibition of spiking in the corresponding system of ordinary differential equations, in the spatial Hodgkin–Huxley model, excitation is applied over a small region and the spiking activity observed as a function of mean stimulus strength with a view to finding the critical values for repetitive firing. During spiking near those critical values, noise of increasing amplitudes is applied over the whole neuron and over restricted regions. Minima have been found in the spike counts which parallel results for the point model and which have been termed inverse stochastic resonance. A stochastic FitzHugh–Nagumo system is also described and results given for the probability of transmission along a neuron in the presence of noise.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Austin, T.D.: The emergence of the deterministic Hodgkin-Huxley equations as a limit from the underlying stochastic ion-channel mechanism. Ann. Appl. Probab. 18, 1279–1325 (2008) Austin, T.D.: The emergence of the deterministic Hodgkin-Huxley equations as a limit from the underlying stochastic ion-channel mechanism. Ann. Appl. Probab. 18, 1279–1325 (2008)
2.
Zurück zum Zitat Bergé, B., Chueshov, I.D., Vuillermot, P.A.: On the behavior of solutions to certain parabolic SPDEs driven by Wiener processes. Stoch. Proc. Appl. 92, 237–263 (2001) Bergé, B., Chueshov, I.D., Vuillermot, P.A.: On the behavior of solutions to certain parabolic SPDEs driven by Wiener processes. Stoch. Proc. Appl. 92, 237–263 (2001)
3.
Zurück zum Zitat Burlhis, T.M., Aghajanian, G.K.: Pacemaker potentials of serotonergic dorsal raphe neurons: contribution of a low-threshold Ca2 +  conductance. Synapse 1, 582–588 (1987) Burlhis, T.M., Aghajanian, G.K.: Pacemaker potentials of serotonergic dorsal raphe neurons: contribution of a low-threshold Ca2 +  conductance. Synapse 1, 582–588 (1987)
4.
Zurück zum Zitat Destexhe, A., Sejnowski, O.: Thalamocortical Assemblies. Oxford University Press, Oxford (2001) Destexhe, A., Sejnowski, O.: Thalamocortical Assemblies. Oxford University Press, Oxford (2001)
5.
Zurück zum Zitat Ditlevsen, S., Ditlevsen, O.: Parameter estimation from observations of first-passage times of the Ornstein-Uhlenbeck process and the Feller process. Probabilist. Eng. Mech. 23, 170–179 (2008) Ditlevsen, S., Ditlevsen, O.: Parameter estimation from observations of first-passage times of the Ornstein-Uhlenbeck process and the Feller process. Probabilist. Eng. Mech. 23, 170–179 (2008)
6.
Zurück zum Zitat Ditlevsen, S., Lansky, P.: Estimation of the input parameters in the Ornstein-Uhlenbeck neuronal model. Phys. Rev. E 71, Art. No. 011,907 (2005) Ditlevsen, S., Lansky, P.: Estimation of the input parameters in the Ornstein-Uhlenbeck neuronal model. Phys. Rev. E 71, Art. No. 011,907 (2005)
7.
Zurück zum Zitat Dodge, F.A., Cooley, J.: Action potential of the motoneuron. IBM J. Res. Devel. 17, 219–229 (1973) Dodge, F.A., Cooley, J.: Action potential of the motoneuron. IBM J. Res. Devel. 17, 219–229 (1973)
8.
Zurück zum Zitat Dolphin, A.C.: Calcium channel diversity: multiple roles of calcium channel subunits. Curr. Opin. Neurobiol. 19, 237–244 (2009) Dolphin, A.C.: Calcium channel diversity: multiple roles of calcium channel subunits. Curr. Opin. Neurobiol. 19, 237–244 (2009)
9.
Zurück zum Zitat FitzHugh, R.: Mathematical models of excitation and propagation in nerve. In: Biological Engineering. McGrawHill, New York (1969) FitzHugh, R.: Mathematical models of excitation and propagation in nerve. In: Biological Engineering. McGrawHill, New York (1969)
10.
Zurück zum Zitat Gerstein, G.L., Mandelbrot, B.: Random walk models for the spike activity of a single neuron. Biophys. J. 4, 4168 (1964) Gerstein, G.L., Mandelbrot, B.: Random walk models for the spike activity of a single neuron. Biophys. J. 4, 4168 (1964)
11.
Zurück zum Zitat Gluss, B.: A model for neuron firing with exponential decay of potential resulting in diffusion equations for probability density. Bull. Math. Biophys. 29, 233–243 (1967) Gluss, B.: A model for neuron firing with exponential decay of potential resulting in diffusion equations for probability density. Bull. Math. Biophys. 29, 233–243 (1967)
12.
Zurück zum Zitat Goldfinger, M.D.: Poisson process stimulation of an excitable membrane cable model. Biophys. J. 50, 27–40 (1986) Goldfinger, M.D.: Poisson process stimulation of an excitable membrane cable model. Biophys. J. 50, 27–40 (1986)
13.
Zurück zum Zitat Gutkin, B.S., Jost, J., Tuckwell, H.C.: Inhibition of rhythmic neural spiking by noise: the occurrence of a minimum in activity with increasing noise. Naturwissenschaften 96, 1091–1097 (2009) Gutkin, B.S., Jost, J., Tuckwell, H.C.: Inhibition of rhythmic neural spiking by noise: the occurrence of a minimum in activity with increasing noise. Naturwissenschaften 96, 1091–1097 (2009)
14.
Zurück zum Zitat Gutman, G.A., Chandy, K.G., Grissmer, S., Lazdunski, M., McKinnon, D., Pardo, L.A., Robertson, G.A., Rudy, B., Sanguinetti, M.C., Stuhmer, W., Wang, X.: International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol. Rev. 57, 473,508 (2005) Gutman, G.A., Chandy, K.G., Grissmer, S., Lazdunski, M., McKinnon, D., Pardo, L.A., Robertson, G.A., Rudy, B., Sanguinetti, M.C., Stuhmer, W., Wang, X.: International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol. Rev. 57, 473,508 (2005)
15.
Zurück zum Zitat Hanson, F.B., Tuckwell, H.C.: Diffusion approximations for neuronal activity including synaptic reversal potentials. J. Theoret. Neurobiol. 2, 127–153 (1983) Hanson, F.B., Tuckwell, H.C.: Diffusion approximations for neuronal activity including synaptic reversal potentials. J. Theoret. Neurobiol. 2, 127–153 (1983)
16.
Zurück zum Zitat Hellwig, B.: A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biol. Cybern. 82, 111–121 (2000) Hellwig, B.: A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biol. Cybern. 82, 111–121 (2000)
17.
Zurück zum Zitat Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952) Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)
18.
Zurück zum Zitat Horikawa, Y.: Noise effects on spike propagation in the stochastic Hodgkin-Huxley models. Biol. Cybern. 66, 19–25 (1991) Horikawa, Y.: Noise effects on spike propagation in the stochastic Hodgkin-Huxley models. Biol. Cybern. 66, 19–25 (1991)
19.
Zurück zum Zitat Iannella, N., Tanaka, S., Tuckwell, H.C.: Firing properties of a stochastic PDE model of a rat sensory cortex layer 2/3 pyramidal cell. Math. Biosci. 188, 117–132 (2004) Iannella, N., Tanaka, S., Tuckwell, H.C.: Firing properties of a stochastic PDE model of a rat sensory cortex layer 2/3 pyramidal cell. Math. Biosci. 188, 117–132 (2004)
20.
Zurück zum Zitat Kallianpur, G., Xiong, J.: Diffusion approximation of nuclear space-valued stochastic differential equations driven by Poisson random measures. Ann. Appl. Probab. 5, 493–517 (1995) Kallianpur, G., Xiong, J.: Diffusion approximation of nuclear space-valued stochastic differential equations driven by Poisson random measures. Ann. Appl. Probab. 5, 493–517 (1995)
21.
Zurück zum Zitat Koch, C.: Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, Oxford (1999) Koch, C.: Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, Oxford (1999)
22.
Zurück zum Zitat Komendantov, A.O., Tasker, J.G., Trayanova, N.A.: Somato-dendritic mechanisms underlying the electrophysiological properties of hypothalamic magnocellular neuroendocrine cells: A multicompartmental model study. J. Comput. Neurosci. 23, 143–168 (2007) Komendantov, A.O., Tasker, J.G., Trayanova, N.A.: Somato-dendritic mechanisms underlying the electrophysiological properties of hypothalamic magnocellular neuroendocrine cells: A multicompartmental model study. J. Comput. Neurosci. 23, 143–168 (2007)
23.
Zurück zum Zitat Levitan, I.B., Kaczmarek, L.K.: Neuromodulation. Oxford University Press, Oxford (1987) Levitan, I.B., Kaczmarek, L.K.: Neuromodulation. Oxford University Press, Oxford (1987)
24.
Zurück zum Zitat Lindner, B., Garcia-Ojalvo, J., Neiman, A., Schimansky-Geier, L.: Effects of noise in excitable systems. Phys. Rep. 392, 321–424 (2004) Lindner, B., Garcia-Ojalvo, J., Neiman, A., Schimansky-Geier, L.: Effects of noise in excitable systems. Phys. Rep. 392, 321–424 (2004)
25.
Zurück zum Zitat Llinas, R.: The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242, 1654–1664 (1988) Llinas, R.: The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242, 1654–1664 (1988)
26.
Zurück zum Zitat Mainen, Z.F., Joerges, J., Huguenard, J.R., Sejnowski, T.J.: A model of spike initiation in neocortical pyramidal neurons. Neuron 15, 1427–1439 (1995) Mainen, Z.F., Joerges, J., Huguenard, J.R., Sejnowski, T.J.: A model of spike initiation in neocortical pyramidal neurons. Neuron 15, 1427–1439 (1995)
27.
Zurück zum Zitat Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., Wu, C.: Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 5, 793–807 (2004) Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., Wu, C.: Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 5, 793–807 (2004)
28.
Zurück zum Zitat McCormick, D.A., Huguenard, J.R.: A model of the electrophysiological properties of thalamocortical relay neurons. J. Neurophysiol. 68, 1384–1400 (1992) McCormick, D.A., Huguenard, J.R.: A model of the electrophysiological properties of thalamocortical relay neurons. J. Neurophysiol. 68, 1384–1400 (1992)
29.
Zurück zum Zitat Megías, M., Emri, Z.S., Freund, T.F., Gulyás, A.I.: Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102, 527–540 (2001) Megías, M., Emri, Z.S., Freund, T.F., Gulyás, A.I.: Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102, 527–540 (2001)
30.
Zurück zum Zitat Meir, A., Ginsburg, S., Butkevich, A., Kachalsky, S.G., Kaiserman, I., Ahdut, R., Demirgoren, S., Rahamimoff, R.: Ion channels in presynaptic nerve terminals and control of transmitter release. Physiol. Rev. 79, 1020–1088 (1999) Meir, A., Ginsburg, S., Butkevich, A., Kachalsky, S.G., Kaiserman, I., Ahdut, R., Demirgoren, S., Rahamimoff, R.: Ion channels in presynaptic nerve terminals and control of transmitter release. Physiol. Rev. 79, 1020–1088 (1999)
31.
Zurück zum Zitat Rhodes, P.A., Llinas, R.: A model of thalamocortical relay cells. J. Physiol. 565, 765–781 (2005) Rhodes, P.A., Llinas, R.: A model of thalamocortical relay cells. J. Physiol. 565, 765–781 (2005)
32.
Zurück zum Zitat Roy, B.K., Smith, D.R.: Analysis of the exponential decay model of the neuron showing frequency threshold effects. Bull. Math. Biophys. 31, 341–357 (1969) Roy, B.K., Smith, D.R.: Analysis of the exponential decay model of the neuron showing frequency threshold effects. Bull. Math. Biophys. 31, 341–357 (1969)
33.
Zurück zum Zitat Sholl, D.: The Organization of the Cerebral Cortex. Methuen, London (1956) Sholl, D.: The Organization of the Cerebral Cortex. Methuen, London (1956)
34.
Zurück zum Zitat Shu, Y., Hasenstaub, A., Badoual, M., Bal, T., McCormick, D.A.: Barrages of synaptic activity control the gain and sensitivity of cortical neurons. J. Neurosci. 23, 10388–10401 (2003) Shu, Y., Hasenstaub, A., Badoual, M., Bal, T., McCormick, D.A.: Barrages of synaptic activity control the gain and sensitivity of cortical neurons. J. Neurosci. 23, 10388–10401 (2003)
35.
Zurück zum Zitat Skaugen, E., Walloe, L.: Firing behaviour in a stochastic nerve membrane model based upon the Hodgkin-Huxley equations. Acta Physiol. Scand. 107, 343–363 (1979) Skaugen, E., Walloe, L.: Firing behaviour in a stochastic nerve membrane model based upon the Hodgkin-Huxley equations. Acta Physiol. Scand. 107, 343–363 (1979)
36.
Zurück zum Zitat Spruston, N.: Pyramidal neurons: dendritic structure and synaptic integration. Nat. Rev. Neurosci. 9, 206–221 (2008) Spruston, N.: Pyramidal neurons: dendritic structure and synaptic integration. Nat. Rev. Neurosci. 9, 206–221 (2008)
37.
Zurück zum Zitat Traub, R.D.: Motoneurons of different geometry and the size principle. Biol. Cybern. 25, 163–175 (1977) Traub, R.D.: Motoneurons of different geometry and the size principle. Biol. Cybern. 25, 163–175 (1977)
38.
Zurück zum Zitat Traub, R.D.: Neocortical pyramidal cells: a model with dendritic calcium conductance reproduces repetitive firing and epileptic behavior. Brain Res. 173, 243–257 (1979) Traub, R.D.: Neocortical pyramidal cells: a model with dendritic calcium conductance reproduces repetitive firing and epileptic behavior. Brain Res. 173, 243–257 (1979)
39.
Zurück zum Zitat Tuckwell, H.C.: Synaptic transmission in a model for stochastic neural activity. J. Theor. Biol. 77, 65–81 (1979) Tuckwell, H.C.: Synaptic transmission in a model for stochastic neural activity. J. Theor. Biol. 77, 65–81 (1979)
40.
Zurück zum Zitat Tuckwell, H.C.: Poisson Processes in Biology. In: Stochastic Nonlinear Systems, pp. 162–172. Springer, Berlin (1981) Tuckwell, H.C.: Poisson Processes in Biology. In: Stochastic Nonlinear Systems, pp. 162–172. Springer, Berlin (1981)
41.
Zurück zum Zitat Tuckwell, H.C.: Stochastic equations for nerve membrane potential. J. Theoret. Neurobiol. 5, 87–99 (1986) Tuckwell, H.C.: Stochastic equations for nerve membrane potential. J. Theoret. Neurobiol. 5, 87–99 (1986)
42.
Zurück zum Zitat Tuckwell, H.C.: Introduction to Theoretical Neurobiology, vol. 1: Linear Cable Theory and Dendritic Structure. Cambridge University Press, Cambridge (1988) Tuckwell, H.C.: Introduction to Theoretical Neurobiology, vol. 1: Linear Cable Theory and Dendritic Structure. Cambridge University Press, Cambridge (1988)
43.
Zurück zum Zitat Tuckwell, H.C.: Introduction to Theoretical Neurobiology, vol. 2: Nonlinear and Stochastic Theories. Cambridge University Press, Cambridge (1988) Tuckwell, H.C.: Introduction to Theoretical Neurobiology, vol. 2: Nonlinear and Stochastic Theories. Cambridge University Press, Cambridge (1988)
44.
Zurück zum Zitat Tuckwell, H.C.: Stochastic Processes in the Neurosciences. SIAM, Philadelphia (1989) Tuckwell, H.C.: Stochastic Processes in the Neurosciences. SIAM, Philadelphia (1989)
45.
Zurück zum Zitat Tuckwell, H.C.: Spatial neuron model with two-parameter Ornstein-Uhlenbeck input current. Phys. A 368, 495–510 (2006) Tuckwell, H.C.: Spatial neuron model with two-parameter Ornstein-Uhlenbeck input current. Phys. A 368, 495–510 (2006)
46.
Zurück zum Zitat Tuckwell, H.C.: Analytical and simulation results for the stochastic spatial FitzHugh-Nagumo neuron. Neural Comput. 20, 3003–3035 (2008) Tuckwell, H.C.: Analytical and simulation results for the stochastic spatial FitzHugh-Nagumo neuron. Neural Comput. 20, 3003–3035 (2008)
47.
Zurück zum Zitat Tuckwell, H.C., Jost, J.: Weak noise in neurons may powerfully inhibit the generation of repetitive spiking but not its propagation. PLoS Comp. Biol. 6, e1000794 (2010) Tuckwell, H.C., Jost, J.: Weak noise in neurons may powerfully inhibit the generation of repetitive spiking but not its propagation. PLoS Comp. Biol. 6, e1000794 (2010)
48.
Zurück zum Zitat Tuckwell, H.C., Jost, J.: The effects of various spatial distributions of weak noise on rhythmic spiking. J. Comp. Neurosci. 30, 361–371 (2011) Tuckwell, H.C., Jost, J.: The effects of various spatial distributions of weak noise on rhythmic spiking. J. Comp. Neurosci. 30, 361–371 (2011)
49.
Zurück zum Zitat Tuckwell, H.C., Walsh, J.B.: Random currents through nerve membranes. Biol. Cybern. 49, 99–110 (1983) Tuckwell, H.C., Walsh, J.B.: Random currents through nerve membranes. Biol. Cybern. 49, 99–110 (1983)
50.
Zurück zum Zitat Tuckwell, H.C., Wan, F.Y.M., Wong, Y.S.: The interspike interval of a cable model neuron with white noise input. Biol. Cybern. 49, 155–167 (1984) Tuckwell, H.C., Wan, F.Y.M., Wong, Y.S.: The interspike interval of a cable model neuron with white noise input. Biol. Cybern. 49, 155–167 (1984)
51.
Zurück zum Zitat Tuckwell, H.C., Wan, F.Y.M., Rospars, J.P.: A spatial stochastic neuronal model with Ornstein-Uhlenbeck input current. Biol. Cybern. 86, 137–145 (2002) Tuckwell, H.C., Wan, F.Y.M., Rospars, J.P.: A spatial stochastic neuronal model with Ornstein-Uhlenbeck input current. Biol. Cybern. 86, 137–145 (2002)
52.
Zurück zum Zitat Tuckwell, H.C., Jost, J., Gutkin, B.S.: Inhibition and modulation of rhythmic neuronal spiking by noise. Phys. Rev. E 80, 031907 (2009) Tuckwell, H.C., Jost, J., Gutkin, B.S.: Inhibition and modulation of rhythmic neuronal spiking by noise. Phys. Rev. E 80, 031907 (2009)
53.
Zurück zum Zitat Watts, J., Thomson, A.M.: Excitatory and inhibitory connections show selectivity in the neocortex. J. Physiol. 562.1, 89–97 (2005) Watts, J., Thomson, A.M.: Excitatory and inhibitory connections show selectivity in the neocortex. J. Physiol. 562.1, 89–97 (2005)
54.
Zurück zum Zitat Zhang, X., You, G., Chen, T., Feng, J.: Maximum likelihood decoding of neuronal inputs from an interspike interval distribution. Neural Comput. 21, 1–27 (2009) Zhang, X., You, G., Chen, T., Feng, J.: Maximum likelihood decoding of neuronal inputs from an interspike interval distribution. Neural Comput. 21, 1–27 (2009)
Metadaten
Titel
Stochastic Partial Differential Equations in Neurobiology: Linear and Nonlinear Models for Spiking Neurons
verfasst von
Henry C. Tuckwell
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-32157-3_6