Skip to main content

2021 | OriginalPaper | Buchkapitel

Double Negative Material-Based Miniaturized Passive Planar S-Shaped Radiator

verfasst von : U. Surendar, S. Senthilkumar, J. William

Erschienen in: Advances in Electrical and Computer Technologies

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Metamaterials are formed by inclusions in material components to achieve qualitatively new physical realizable properties and responses that do not be readily available in nature. This field has gathered a wide research interest in recent years. This paper highlights the use of metamaterial concept in the size reduction and increasing the performance of an antenna. Here, a planar microstrip s-patch antenna is proposed for the LTE band 2.6 GHz. The achievement of compact size in the antenna has been a greater advantage, which helps in making the designed antenna for the LTE-WLAN application with major concentration on Fresnel region.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K.L. Wong, Compact and Broadband Microstrip Antennas (Wiley, Hoboken, NJ, 2002)CrossRef K.L. Wong, Compact and Broadband Microstrip Antennas (Wiley, Hoboken, NJ, 2002)CrossRef
2.
Zurück zum Zitat R. Waterhouse, Small microstrip patch antenna. Electron. Lett. 31(8), 604–605 (1995)CrossRef R. Waterhouse, Small microstrip patch antenna. Electron. Lett. 31(8), 604–605 (1995)CrossRef
3.
Zurück zum Zitat S.A. Bokhari, J.F. Zuercher, J.R. Mosig, F.E. Gardiol, A small microstrip patch antenna with a convenient tuning option. IEEE Trans. Antennas Propag. 44(11), 1521–1528 (1996)CrossRef S.A. Bokhari, J.F. Zuercher, J.R. Mosig, F.E. Gardiol, A small microstrip patch antenna with a convenient tuning option. IEEE Trans. Antennas Propag. 44(11), 1521–1528 (1996)CrossRef
4.
5.
Zurück zum Zitat J.P. Gianvittorio, Y. Rahmat-Samii, Fractal antennas: A novel antenna miniaturization technique, and applications. IEEE Trans. Antennas Propag. Mag. 44(1), 20–36 (2002)CrossRef J.P. Gianvittorio, Y. Rahmat-Samii, Fractal antennas: A novel antenna miniaturization technique, and applications. IEEE Trans. Antennas Propag. Mag. 44(1), 20–36 (2002)CrossRef
6.
Zurück zum Zitat R. Chair, K.M. Luke, K.F. Lee, Miniature multi-layer shorted patch antenna. Electron. Lett. 36(1), 3–4 (2000)CrossRef R. Chair, K.M. Luke, K.F. Lee, Miniature multi-layer shorted patch antenna. Electron. Lett. 36(1), 3–4 (2000)CrossRef
7.
Zurück zum Zitat D. Sievenpiper, L. Zhang, R.F.J. Broas, N.G. Alexopoulos, E. Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech. 47, 2059–2074 (1999)CrossRef D. Sievenpiper, L. Zhang, R.F.J. Broas, N.G. Alexopoulos, E. Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech. 47, 2059–2074 (1999)CrossRef
8.
Zurück zum Zitat D. Sievenpiper, H.P. Hsu, J. Schaffner, G. Tangonan, R. Garcia, S. Ontiveros, Low profile, four sector diversity antenna on high impedance ground plane. Electron. Lett. 36, 1343–1345 (2000)CrossRef D. Sievenpiper, H.P. Hsu, J. Schaffner, G. Tangonan, R. Garcia, S. Ontiveros, Low profile, four sector diversity antenna on high impedance ground plane. Electron. Lett. 36, 1343–1345 (2000)CrossRef
9.
Zurück zum Zitat K. Sarabandi, M.D. Casciato, I.S. Koh, Efficient calculation of the fields of a dipole radiating above an impedance surface. IEEE Trans. Antennas Propag. 50, 1222–1235 (2002)CrossRef K. Sarabandi, M.D. Casciato, I.S. Koh, Efficient calculation of the fields of a dipole radiating above an impedance surface. IEEE Trans. Antennas Propag. 50, 1222–1235 (2002)CrossRef
10.
Zurück zum Zitat H. Mosallaei, K. Sarabandi, Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate. IEEE Trans. Antennas Propag. 52(9), 2403–2414 (2007)CrossRef H. Mosallaei, K. Sarabandi, Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate. IEEE Trans. Antennas Propag. 52(9), 2403–2414 (2007)CrossRef
11.
Zurück zum Zitat P.M.T. Ikonen, K.N. Rozanov, A.V. Osipov, P. Alitalo, S.A. Tretyakov, Magneto-dielectric substrates in antenna miniaturization: Potential and limitations. IEEE Trans. Antennas Propag. 54(11), 3391–3399 (2006)CrossRef P.M.T. Ikonen, K.N. Rozanov, A.V. Osipov, P. Alitalo, S.A. Tretyakov, Magneto-dielectric substrates in antenna miniaturization: Potential and limitations. IEEE Trans. Antennas Propag. 54(11), 3391–3399 (2006)CrossRef
12.
Zurück zum Zitat K. Buell, H. Mosallaei, K. Sarabandi, A substrate for small patch antennas providing tunable miniaturization factors. IEEE Trans. Microw. Theory Tech. 54(1), 135–146 (2006)CrossRef K. Buell, H. Mosallaei, K. Sarabandi, A substrate for small patch antennas providing tunable miniaturization factors. IEEE Trans. Microw. Theory Tech. 54(1), 135–146 (2006)CrossRef
13.
Zurück zum Zitat J. McVay, N. Engheta, A. Hoorfar, High-impedance metamaterial surfaces using Hilbert-curve inclusions. IEEE Microw. Wireless Compon. Lett. 14(3), 130–132 (2004)CrossRef J. McVay, N. Engheta, A. Hoorfar, High-impedance metamaterial surfaces using Hilbert-curve inclusions. IEEE Microw. Wireless Compon. Lett. 14(3), 130–132 (2004)CrossRef
14.
Zurück zum Zitat A. Erentok, P. Luljak, R.W. Ziolkwoski, Antenna performance near a volumetric metamaterial realization of an artificialmagnetic conductor. IEEE Trans. Antennas Propag. 53, 160–172 (2005)CrossRef A. Erentok, P. Luljak, R.W. Ziolkwoski, Antenna performance near a volumetric metamaterial realization of an artificialmagnetic conductor. IEEE Trans. Antennas Propag. 53, 160–172 (2005)CrossRef
15.
Zurück zum Zitat A. Alu, F. Bilotti, N. Engheta, L. Vegni, Sub-wavelength, compact, resonant patch antennas loaded with metamaterials. IEEE Trans. Antennas Propag. 55(1), 13–25 (2007)CrossRef A. Alu, F. Bilotti, N. Engheta, L. Vegni, Sub-wavelength, compact, resonant patch antennas loaded with metamaterials. IEEE Trans. Antennas Propag. 55(1), 13–25 (2007)CrossRef
16.
Zurück zum Zitat H. Mosallaei, K. Sarabandi, Design andmodeling of patch antenna printed on magneto-dielectric embedded-circuit metasubstrate. IEEE Trans. Antennas Propag. 55(1), 45–52 (2007)CrossRef H. Mosallaei, K. Sarabandi, Design andmodeling of patch antenna printed on magneto-dielectric embedded-circuit metasubstrate. IEEE Trans. Antennas Propag. 55(1), 45–52 (2007)CrossRef
17.
Zurück zum Zitat F. Bilotti, A. Alu, L. Vegni, Design of miniaturized metamaterial patch antennas with -negative loading. IEEE Trans. Antennas Propag. 56(6), 1640–1647 (2008)CrossRef F. Bilotti, A. Alu, L. Vegni, Design of miniaturized metamaterial patch antennas with -negative loading. IEEE Trans. Antennas Propag. 56(6), 1640–1647 (2008)CrossRef
18.
Zurück zum Zitat Y. Lee, S. Tse, Y. Hao, and C. G. Parini, A Compact Microstrip Antenna With Improved Bandwidth Using Complementary Split-Ring Resonator (CSRR) Loading. in IEEE International Symposium Antennas and Propagation and URSI Radio Science Meeting Dig (2007), pp. 5431–5434 Y. Lee, S. Tse, Y. Hao, and C. G. Parini, A Compact Microstrip Antenna With Improved Bandwidth Using Complementary Split-Ring Resonator (CSRR) Loading. in IEEE International Symposium Antennas and Propagation and URSI Radio Science Meeting Dig (2007), pp. 5431–5434
19.
Zurück zum Zitat A.U. Limaye, J. Venkataraman, Size Reduction In Microstrip Antennas Using Left-Handed Materials Realized by Complementary Split-Ring Resonators in Ground Plane. in IEEE International Symposium Antennas and Propagation and URSI Radio Science MeetingDig (2007), pp. 1869–1872 A.U. Limaye, J. Venkataraman, Size Reduction In Microstrip Antennas Using Left-Handed Materials Realized by Complementary Split-Ring Resonators in Ground Plane. in IEEE International Symposium Antennas and Propagation and URSI Radio Science MeetingDig (2007), pp. 1869–1872
20.
Zurück zum Zitat M. Li, M. Lu, T.J. Cui, Novel Miniaturized Dual Band Antenna Design Using Complementary Metamaterial. in Metamaterials (2008), pp. 374–376 M. Li, M. Lu, T.J. Cui, Novel Miniaturized Dual Band Antenna Design Using Complementary Metamaterial. in Metamaterials (2008), pp. 374–376
21.
Zurück zum Zitat R.O. Ouedraogo, E.J. Rothwell, Metamaterial-Inspired Patch Antenna Miniaturization Technique. in IEEE International Symposium Antennas and Propagation and URSI Radio Science Meeting Dig (2010), pp. 1–4 R.O. Ouedraogo, E.J. Rothwell, Metamaterial-Inspired Patch Antenna Miniaturization Technique. in IEEE International Symposium Antennas and Propagation and URSI Radio Science Meeting Dig (2010), pp. 1–4
22.
Zurück zum Zitat J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999)CrossRef J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999)CrossRef
23.
Zurück zum Zitat F. Bilotti, A. Toscano, L. Vegni, Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples. IEEE Trans. Antennas Propag. 55(8), 2258–2267 (2007)CrossRef F. Bilotti, A. Toscano, L. Vegni, Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples. IEEE Trans. Antennas Propag. 55(8), 2258–2267 (2007)CrossRef
24.
Zurück zum Zitat C.R. Das, S. Sahoo, Design of compact L slit microstrip patch antenna for Wimax application. IJIRTS. 17–21. ISSN 2321-1156 C.R. Das, S. Sahoo, Design of compact L slit microstrip patch antenna for Wimax application. IJIRTS. 17–21. ISSN 2321-1156
25.
Zurück zum Zitat M. Olyphant, Jr., T.E Nowicki, Microwave substrates support MIC technology Microwaves Part I 19(12), 74–80 (1980) M. Olyphant, Jr., T.E Nowicki, Microwave substrates support MIC technology Microwaves Part I 19(12), 74–80 (1980)
26.
Zurück zum Zitat H.B. Chu, H. Shirai, A Compact metamaterial quad-band antenna based on asymmetric E-CRLH unit cell. PIER 81, 171–179 (2018) H.B. Chu, H. Shirai, A Compact metamaterial quad-band antenna based on asymmetric E-CRLH unit cell. PIER 81, 171–179 (2018)
27.
Zurück zum Zitat Y. Dong, J. Choi, T. Itoh, Folded strip/slot antenna with extended bandwidth for WLAN application. IEEE Antennas Propag. Lett. 1–4 (2016) Y. Dong, J. Choi, T. Itoh, Folded strip/slot antenna with extended bandwidth for WLAN application. IEEE Antennas Propag. Lett. 1–4 (2016)
28.
Zurück zum Zitat S. Imaculate Rosaline, S. Raghavan, Metamaterial inspired square ring monopole antenna for WLAN applications. ACES 32(12), 1160–1163 (2017) S. Imaculate Rosaline, S. Raghavan, Metamaterial inspired square ring monopole antenna for WLAN applications. ACES 32(12), 1160–1163 (2017)
29.
Zurück zum Zitat S. Imaculate Rosaline, S. Raghavan, Metamaterial inspired split monopole antenna for WLAN applications. ACES 33(2), 188–191 (2018) S. Imaculate Rosaline, S. Raghavan, Metamaterial inspired split monopole antenna for WLAN applications. ACES 33(2), 188–191 (2018)
30.
Zurück zum Zitat G. Varamini, A. Keshtkar, M. Nasser-Moghadasi, Miniaturization of microstrip loop antenna for wireless applications based on metamaterial metasurface. AEU Int. J. Electro. Commun. 83, 32–39 (2018). Elsevier G. Varamini, A. Keshtkar, M. Nasser-Moghadasi, Miniaturization of microstrip loop antenna for wireless applications based on metamaterial metasurface. AEU Int. J. Electro. Commun. 83, 32–39 (2018). Elsevier
31.
Zurück zum Zitat T. Ali, A.W. Mohammad Saadh, R.C Biradar, J. Anguera, A. Andújar, A miniaturized metamaterial slot antenna for wireless applications. AEU Int. J. Electron. Commun. 82, 368–382 (2017) Elsevier T. Ali, A.W. Mohammad Saadh, R.C Biradar, J. Anguera, A. Andújar, A miniaturized metamaterial slot antenna for wireless applications. AEU Int. J. Electron. Commun. 82, 368–382 (2017) Elsevier
32.
Zurück zum Zitat K.K. Naik, Asymmetric CPW-fed SRR patch antenna for WLAN/WiMAX applications. AEU Int. J. Electron. Commun. Elsevier 93, 103–108 (2018)CrossRef K.K. Naik, Asymmetric CPW-fed SRR patch antenna for WLAN/WiMAX applications. AEU Int. J. Electron. Commun. Elsevier 93, 103–108 (2018)CrossRef
33.
Zurück zum Zitat N. Sharmaa, S.S. Bhatia, Split ring resonator based multiband hybrid fractal antennas for wireless applications. AEU Int. J. Electron. Commun. Elsevier 93, 39–52 (2018) N. Sharmaa, S.S. Bhatia, Split ring resonator based multiband hybrid fractal antennas for wireless applications. AEU Int. J. Electron. Commun. Elsevier 93, 39–52 (2018)
Metadaten
Titel
Double Negative Material-Based Miniaturized Passive Planar S-Shaped Radiator
verfasst von
U. Surendar
S. Senthilkumar
J. William
Copyright-Jahr
2021
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-15-9019-1_42

Neuer Inhalt