Skip to main content

2023 | OriginalPaper | Buchkapitel

4. PTT/Rubber, Thermoplastic and Thermosetting Polymer Blends and IPNs

verfasst von : Rinku Mariam Thomas, Sreedha Sambhudevan, S. Hema, Arunima Reghunadhan

Erschienen in: Poly Trimethylene Terephthalate

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polymers with ester as the functional group on the main chain are called polyesters. In industries, the term polyester refers to mainly polyethylene terephthalate (PET) and polybutylene terephthalate (Yilmaa et al. in Mater Res 24:e20210021, 2021). Depending on the chemical structure, polyesters are classified into thermoplastic and thermosetting polyesters. The main source of polyesters is petroleum origin and is typically available in the form of plastics, films and fibers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Panigrahi H, Sreenath PR, Kotnees DK (2020) Unique compatibilized thermoplastic elastomer with high strength and remarkable ductility: effect of multiple point interactions within a rubber-plastic blend. ACS Omega 5(22):12789–12808. https://doi.org/10.1021/acsomega.0c00423 Panigrahi H, Sreenath PR, Kotnees DK (2020) Unique compatibilized thermoplastic elastomer with high strength and remarkable ductility: effect of multiple point interactions within a rubber-plastic blend. ACS Omega 5(22):12789–12808. https://​doi.​org/​10.​1021/​acsomega.​0c00423
4.
Zurück zum Zitat Terzopoulou Z, Papadopoulos L, Zamboulis A, Papageorgiou DG, Papageorgiou GZ, Bikiaris DN (2020) Tuning the properties of furandicarboxylic acid-based polyesters with copolymerization: a review. Polymers 12(6):1209. https://doi.org/10.3390/polym12061209 Terzopoulou Z, Papadopoulos L, Zamboulis A, Papageorgiou DG, Papageorgiou GZ, Bikiaris DN (2020) Tuning the properties of furandicarboxylic acid-based polyesters with copolymerization: a review. Polymers 12(6):1209. https://​doi.​org/​10.​3390/​polym12061209
5.
6.
7.
9.
11.
Zurück zum Zitat Czarnecka-Komorowska D, Nowak-Grzebyta J, Gawdzińska K, Mysiukiewicz O, Tomasik M (2021) Polyethylene/polyamide blends made of waste with compatibilizer: processing, morphology, rheological and thermo-mechanical behavior. Polymers 13:2385. https://doi.org/10.3390/polym13142385 Czarnecka-Komorowska D, Nowak-Grzebyta J, Gawdzińska K, Mysiukiewicz O, Tomasik M (2021) Polyethylene/polyamide blends made of waste with compatibilizer: processing, morphology, rheological and thermo-mechanical behavior. Polymers 13:2385. https://​doi.​org/​10.​3390/​polym13142385
14.
Zurück zum Zitat Zhang M, Colby RH, Milner ST, Chung TCM, Huang T, DeGroot W (2013) Synthesis and characterization of maleic anhydride grafted polypropylene with a well-defined molecular structure. Macromolecules 46(11):4313–4323. https://doi.org/10.1021/ma4006632 Zhang M, Colby RH, Milner ST, Chung TCM, Huang T, DeGroot W (2013) Synthesis and characterization of maleic anhydride grafted polypropylene with a well-defined molecular structure. Macromolecules 46(11):4313–4323. https://​doi.​org/​10.​1021/​ma4006632
17.
36.
Zurück zum Zitat Liang JZ, Li RKY (2000) Rubber toughening in polypropylene: a review. J Appl Polym Sci 77(2):409–417CrossRef Liang JZ, Li RKY (2000) Rubber toughening in polypropylene: a review. J Appl Polym Sci 77(2):409–417CrossRef
42.
Zurück zum Zitat Wang KY (2018) Morphology and crystallization behavior of PTT blends with PTW. Key Eng Mater 777:90–94CrossRef Wang KY (2018) Morphology and crystallization behavior of PTT blends with PTW. Key Eng Mater 777:90–94CrossRef
43.
Zurück zum Zitat Sharma R, Jain P, Sadhu SD (2019) Study of morphological and mechanical properties of PBT/PTT blends and their nanocomposites and their correlation. Arab J Sci Eng 44(2):1137–1150 Sharma R, Jain P, Sadhu SD (2019) Study of morphological and mechanical properties of PBT/PTT blends and their nanocomposites and their correlation. Arab J Sci Eng 44(2):1137–1150
44.
Zurück zum Zitat Paszkiewicz S et al (2015) Enhanced thermal and mechanical properties of poly(Trimethylene terephthalate-block-poly(tetramethylene oxide) segmented copolymer based hybrid nanocomposites prepared by in situ polymerization via synergy effect between SWCNTs and graphene nanoplatelets. eXPRESS Polym Lett 9:509–524 Paszkiewicz S et al (2015) Enhanced thermal and mechanical properties of poly(Trimethylene terephthalate-block-poly(tetramethylene oxide) segmented copolymer based hybrid nanocomposites prepared by in situ polymerization via synergy effect between SWCNTs and graphene nanoplatelets. eXPRESS Polym Lett 9:509–524
45.
Zurück zum Zitat Xue M et al (2020) Prominent crystallization promotion effect of montmorillonite on PTT/PC blends with PTT as the continuous phase. Polymers 12(3):541CrossRef Xue M et al (2020) Prominent crystallization promotion effect of montmorillonite on PTT/PC blends with PTT as the continuous phase. Polymers 12(3):541CrossRef
46.
Zurück zum Zitat Braga NF et al (2019) Influence of compatibilizer and carbon nanotubes on mechanical, electrical, and barrier properties of PTT/ABS blends. Adv Ind Eng Polym Res 2(3):121–125 Braga NF et al (2019) Influence of compatibilizer and carbon nanotubes on mechanical, electrical, and barrier properties of PTT/ABS blends. Adv Ind Eng Polym Res 2(3):121–125
47.
Zurück zum Zitat Sperling LH, Hu R (2003) Interpenetrating polymer networks. In: Utracki LA (ed) Polymer blends handbook. Springer Netherlands, Dordrecht, pp 417–447 Sperling LH, Hu R (2003) Interpenetrating polymer networks. In: Utracki LA (ed) Polymer blends handbook. Springer Netherlands, Dordrecht, pp 417–447
49.
Zurück zum Zitat Lee MJ, Choi YS, Kang YS, Choi JH, Kang MS (2012) All-solid-state proton conductive Lee MJ, Choi YS, Kang YS, Choi JH, Kang MS (2012) All-solid-state proton conductive
50.
Zurück zum Zitat Pan H, Pu H, Wan D, Jin M, Chang Z (2011) Proton exchange membranes based on semi-interpenetrating Pan H, Pu H, Wan D, Jin M, Chang Z (2011) Proton exchange membranes based on semi-interpenetrating
51.
Zurück zum Zitat Sangermano M, Cook WD, Papagna S, Grassini S (2012) Hybrid UV-cured organic–inorganic Sangermano M, Cook WD, Papagna S, Grassini S (2012) Hybrid UV-cured organic–inorganic
52.
Zurück zum Zitat Snowdon MR, Mohanty AK, Misra M, Effect of compatibilization on biobased Snowdon MR, Mohanty AK, Misra M, Effect of compatibilization on biobased
53.
Zurück zum Zitat Chen H-B et al (2013) Phosphorus-containing poly(trimethylene terephthalate) derived from 2-(6-oxido-6H-dibenz〈c, e〉〈1,2〉oxaphosphorin-6-yl)-1,4-hydroxyethoxy phenylene: synthesis, thermal degradation, combustion and pyrolysis behavior. J Anal Appl Pyrol 99:40–48 Chen H-B et al (2013) Phosphorus-containing poly(trimethylene terephthalate) derived from 2-(6-oxido-6H-dibenz〈c, e〉〈1,2〉oxaphosphorin-6-yl)-1,4-hydroxyethoxy phenylene: synthesis, thermal degradation, combustion and pyrolysis behavior. J Anal Appl Pyrol 99:40–48
54.
Zurück zum Zitat Jia SY et al (2007) Stannous-acetylacetonate: a new catalyst for poly(trimethylene terephthalate) synthesis. Chin Chem Lett 18(7):827–830CrossRef Jia SY et al (2007) Stannous-acetylacetonate: a new catalyst for poly(trimethylene terephthalate) synthesis. Chin Chem Lett 18(7):827–830CrossRef
55.
Zurück zum Zitat Aoyama S et al (2014) Melt crystallization of poly(ethylene terephthalate): comparing addition of graphene vs. carbon nanotubes. Polymer 55(8):2077–2085 Aoyama S et al (2014) Melt crystallization of poly(ethylene terephthalate): comparing addition of graphene vs. carbon nanotubes. Polymer 55(8):2077–2085
56.
Zurück zum Zitat Chen Z et al (2012) The influences of polyethylene glycol molecular weight on thermal stability, nonisothermal crystallization behavior, and morphology of poly(trimethylene terephthalate)/poly(ethylene oxide terephthalate) copolymers. Polym Testing 31(5):685–696CrossRef Chen Z et al (2012) The influences of polyethylene glycol molecular weight on thermal stability, nonisothermal crystallization behavior, and morphology of poly(trimethylene terephthalate)/poly(ethylene oxide terephthalate) copolymers. Polym Testing 31(5):685–696CrossRef
57.
Zurück zum Zitat Yin L et al (2013) Crystallization behavior of poly(trimethylene terephthalate)/mesoporous silica SBA-15 composites prepared by in situ polymerization. Thermochim Acta 565:72–81CrossRef Yin L et al (2013) Crystallization behavior of poly(trimethylene terephthalate)/mesoporous silica SBA-15 composites prepared by in situ polymerization. Thermochim Acta 565:72–81CrossRef
58.
Zurück zum Zitat Khil MS et al (2004) Nanofibrous mats of poly(trimethylene terephthalate) via electrospinning. Polymer 45(1):295–301CrossRef Khil MS et al (2004) Nanofibrous mats of poly(trimethylene terephthalate) via electrospinning. Polymer 45(1):295–301CrossRef
59.
Zurück zum Zitat Li M et al (2013) A novel high flux poly(trimethylene terephthalate) nanofiber membrane for microfiltration media. Sep Purif Technol 116:199–205CrossRef Li M et al (2013) A novel high flux poly(trimethylene terephthalate) nanofiber membrane for microfiltration media. Sep Purif Technol 116:199–205CrossRef
60.
Zurück zum Zitat Aravind I, Pionteck J, Thomas S (2012) Transreactions in poly trimethylene terephthalate/bisphenol-A polycarbonate (PC) blends analysed by pressure-volume-temperature measurements. Polym Testing 31(1):16–24CrossRef Aravind I, Pionteck J, Thomas S (2012) Transreactions in poly trimethylene terephthalate/bisphenol-A polycarbonate (PC) blends analysed by pressure-volume-temperature measurements. Polym Testing 31(1):16–24CrossRef
61.
Zurück zum Zitat Chen J, Wu D (2014) Poly(trimethylene terephthalate)/Poly(butylenes succinate) blend: phase behavior and mechanical property control using its transesterification system as the compatibilizer. Mater Chem Phys 148(3):554–561CrossRef Chen J, Wu D (2014) Poly(trimethylene terephthalate)/Poly(butylenes succinate) blend: phase behavior and mechanical property control using its transesterification system as the compatibilizer. Mater Chem Phys 148(3):554–561CrossRef
62.
Zurück zum Zitat Nagarajan V, Mohanty AK, Misra M (2016) Reactive compatibilization of poly trimethylene terephthalate (PTT) and polylactic acid (PLA) using terpolymer: factorial design optimization of mechanical properties. Mater Des 110:581–591CrossRef Nagarajan V, Mohanty AK, Misra M (2016) Reactive compatibilization of poly trimethylene terephthalate (PTT) and polylactic acid (PLA) using terpolymer: factorial design optimization of mechanical properties. Mater Des 110:581–591CrossRef
63.
Zurück zum Zitat Sarathchandran C et al (2016) Interfacial interactions of thermally reduced graphene in poly(trimethylene terephthalate)-epoxy resin based composites. Polymer 106:140–151CrossRef Sarathchandran C et al (2016) Interfacial interactions of thermally reduced graphene in poly(trimethylene terephthalate)-epoxy resin based composites. Polymer 106:140–151CrossRef
64.
Zurück zum Zitat Favaro MM, Beatrice CA, Branciforti MC, Bretas RE (2008) Rheological characterization of PTT/MMT nanocomposites Favaro MM, Beatrice CA, Branciforti MC, Bretas RE (2008) Rheological characterization of PTT/MMT nanocomposites
65.
Zurück zum Zitat Wang G, Jiang M, Zhang Q, Wang R, Liang Q, Zhou G (2019) New bio-based copolyesters poly(trimethylene 2,5-thiophenedicarboxylate-co-trimethylene terephthalate): synthesis, crystallization behavior, thermal and mechanical properties. Polymer Wang G, Jiang M, Zhang Q, Wang R, Liang Q, Zhou G (2019) New bio-based copolyesters poly(trimethylene 2,5-thiophenedicarboxylate-co-trimethylene terephthalate): synthesis, crystallization behavior, thermal and mechanical properties. Polymer
67.
Zurück zum Zitat Ramachandran AA, Mathew LP, Thomas S (2019) Effect of MA-g-PP compatibilizer on morphology and electrical properties of MWCNT based blend nanocomposites: new strategy to enhance the dispersion of MWCNTs in immiscible poly (trimethylene terephthalate)/polypropylene blends. Eur Polymer J 118:595–605CrossRef Ramachandran AA, Mathew LP, Thomas S (2019) Effect of MA-g-PP compatibilizer on morphology and electrical properties of MWCNT based blend nanocomposites: new strategy to enhance the dispersion of MWCNTs in immiscible poly (trimethylene terephthalate)/polypropylene blends. Eur Polymer J 118:595–605CrossRef
68.
Zurück zum Zitat Mathew L et al (2018) Tuning of microstructure in engineered poly (trimethylene terephthalate) based blends with nano inclusion as multifunctional additive. Polym Testing 68:395–404 Mathew L et al (2018) Tuning of microstructure in engineered poly (trimethylene terephthalate) based blends with nano inclusion as multifunctional additive. Polym Testing 68:395–404
69.
Zurück zum Zitat Wu D et al (2011) Electrospinning of poly(trimethylene terephthalate)/carbon nanotube composites. Eur Polym J 47(3):284–293CrossRef Wu D et al (2011) Electrospinning of poly(trimethylene terephthalate)/carbon nanotube composites. Eur Polym J 47(3):284–293CrossRef
70.
Zurück zum Zitat Pisitsak P, Magaraphan R (2009) Rheological, morphological, thermal, and mechanical properties of blends of vectra A950 and poly(trimethylene terephthalate): a study on a high-viscosity-ratio system. Polym Testing 28(2):116–127CrossRef Pisitsak P, Magaraphan R (2009) Rheological, morphological, thermal, and mechanical properties of blends of vectra A950 and poly(trimethylene terephthalate): a study on a high-viscosity-ratio system. Polym Testing 28(2):116–127CrossRef
71.
Zurück zum Zitat Inan TY (2017) 2—Thermoplastic-based nanoblends: preparation and characterizations. In: Visakh PM, Markovic G, Pasquini D (eds) Recent developments in polymer macro, micro and nano blends. Woodhead Publishing, pp 17–56 Inan TY (2017) 2—Thermoplastic-based nanoblends: preparation and characterizations. In: Visakh PM, Markovic G, Pasquini D (eds) Recent developments in polymer macro, micro and nano blends. Woodhead Publishing, pp 17–56
72.
Zurück zum Zitat Shu Y-C, Hsiao K-J (2006) Preparation and physical properties of poly(trimethylene terephthalate)/metallocene isotactic polypropylene conjugated fibers. Eur Polymer J 42(10):2773–2780CrossRef Shu Y-C, Hsiao K-J (2006) Preparation and physical properties of poly(trimethylene terephthalate)/metallocene isotactic polypropylene conjugated fibers. Eur Polymer J 42(10):2773–2780CrossRef
73.
Zurück zum Zitat Böhme F, Komber H, Jafari SH (2006) Synthesis and characterization of a novel unsaturated polyester based on poly(trimethylene terephthalate). Polymer 47(6):1892–1898CrossRef Böhme F, Komber H, Jafari SH (2006) Synthesis and characterization of a novel unsaturated polyester based on poly(trimethylene terephthalate). Polymer 47(6):1892–1898CrossRef
74.
Zurück zum Zitat Irska I et al (2021) Relaxation behaviour and free volume of bio-based poly(trimethylene terephthalate)-block-poly(caprolactone) copolymers as revealed by Broadband Dielectric and Positron Annihilation Lifetime Spectroscopies. Polymer 229:123949CrossRef Irska I et al (2021) Relaxation behaviour and free volume of bio-based poly(trimethylene terephthalate)-block-poly(caprolactone) copolymers as revealed by Broadband Dielectric and Positron Annihilation Lifetime Spectroscopies. Polymer 229:123949CrossRef
75.
Zurück zum Zitat Martín-Fabiani I et al (2013) Dielectric relaxation of poly (trimethylene terephthalate) in a broad range of crystallinity. Polymer 54(21):5892–5898CrossRef Martín-Fabiani I et al (2013) Dielectric relaxation of poly (trimethylene terephthalate) in a broad range of crystallinity. Polymer 54(21):5892–5898CrossRef
76.
Zurück zum Zitat Wang G et al (2019) New bio-based copolyesters poly(trimethylene 2,5-thiophenedicarboxylate-co-trimethylene terephthalate): synthesis, crystallization behavior, thermal and mechanical properties. Polymer 173:27–33CrossRef Wang G et al (2019) New bio-based copolyesters poly(trimethylene 2,5-thiophenedicarboxylate-co-trimethylene terephthalate): synthesis, crystallization behavior, thermal and mechanical properties. Polymer 173:27–33CrossRef
77.
Zurück zum Zitat Korivi NS (2015) 8—Preparation, characterization, and applications of poly(ethylene terephthalate) nanocomposites. In: Mittal V (ed) Manufacturing of nanocomposites with engineering plastics. Woodhead Publishing, pp 167–198 Korivi NS (2015) 8—Preparation, characterization, and applications of poly(ethylene terephthalate) nanocomposites. In: Mittal V (ed) Manufacturing of nanocomposites with engineering plastics. Woodhead Publishing, pp 167–198
78.
Zurück zum Zitat Kurian JV (2005) A new polymer platform for the future—Sorona® from corn derived 1,3-propanediol. J Polym Environ 13(2):159–167CrossRef Kurian JV (2005) A new polymer platform for the future—Sorona® from corn derived 1,3-propanediol. J Polym Environ 13(2):159–167CrossRef
79.
Zurück zum Zitat Padee S et al (2013) Preparation of poly(lactic acid) and poly(trimethylene terephthalate) blend fibers for textile application. Energy Procedia 34:534–541CrossRef Padee S et al (2013) Preparation of poly(lactic acid) and poly(trimethylene terephthalate) blend fibers for textile application. Energy Procedia 34:534–541CrossRef
80.
Zurück zum Zitat Lyoo WS, Lee HS, Ji BC, Han SS, Koo K, Kim SS, Kim JH, Lee J-S, Son TW, Yoon WS (2001) Effect of zone drawing on the structure and properties of melt-spun poly(trimethylene terephthalate) fiber. J Appl Polym Sci 81(14) (2001) Lyoo WS, Lee HS, Ji BC, Han SS, Koo K, Kim SS, Kim JH, Lee J-S, Son TW, Yoon WS (2001) Effect of zone drawing on the structure and properties of melt-spun poly(trimethylene terephthalate) fiber. J Appl Polym Sci 81(14) (2001)
81.
Zurück zum Zitat Xing X, Wang Y, Li B (2008) Nanofiber drawing and nanodevice assembly in poly(trimethylene terephthalate). Opt Express 16(14):10815–10822CrossRef Xing X, Wang Y, Li B (2008) Nanofiber drawing and nanodevice assembly in poly(trimethylene terephthalate). Opt Express 16(14):10815–10822CrossRef
82.
Zurück zum Zitat Wang C, Fang C-Y, Wang C-Y (2015) Electrospun poly(butylene terephthalate) fibers: entanglement density effect on fiber diameter and fiber nucleating ability towards isotactic polypropylene. Polymer 72:21–29CrossRef Wang C, Fang C-Y, Wang C-Y (2015) Electrospun poly(butylene terephthalate) fibers: entanglement density effect on fiber diameter and fiber nucleating ability towards isotactic polypropylene. Polymer 72:21–29CrossRef
83.
Zurück zum Zitat Deshmukh GS et al (2015) Nonisothermal crystallization kinetics and melting behavior of poly(butylene terephthalate) and calcium carbonate nanocomposites. Thermochim Acta 606:66–76CrossRef Deshmukh GS et al (2015) Nonisothermal crystallization kinetics and melting behavior of poly(butylene terephthalate) and calcium carbonate nanocomposites. Thermochim Acta 606:66–76CrossRef
84.
Zurück zum Zitat Padee S, Thumsorn S, On JW, Surin P, Apawet C, Chaichalermwong T, Srisawat N (2013) Preparation of poly (lactic acid) and poly (trimethylene terephthalate) blend fibers for textile application. Energy Procedia 34:534–541 Padee S, Thumsorn S, On JW, Surin P, Apawet C, Chaichalermwong T, Srisawat N (2013) Preparation of poly (lactic acid) and poly (trimethylene terephthalate) blend fibers for textile application. Energy Procedia 34:534–541
85.
Zurück zum Zitat Padee S, Thumsorn S, On JW, Surin P, Apawet C, Chaichalermwong T, Kaabbuathong N, O-Charoen N, Srisawat N (2013) Preparation of poly(lactic acid) and poly(trimethylene terephthalate) blend fibers for textile application. Energy Procedia 34:534–541 (2013). ISSN 1876-6102. https://doi.org/10.1016/j.egypro.2013.06.782 Padee S, Thumsorn S, On JW, Surin P, Apawet C, Chaichalermwong T, Kaabbuathong N, O-Charoen N, Srisawat N (2013) Preparation of poly(lactic acid) and poly(trimethylene terephthalate) blend fibers for textile application. Energy Procedia 34:534–541 (2013). ISSN 1876-6102. https://​doi.​org/​10.​1016/​j.​egypro.​2013.​06.​782
87.
Zurück zum Zitat Ajitha AR, Mathew LP, Thomas S (2019) Effect of MA-g-PP compatibilizer on morphology and electrical properties of MWCNT based blend nanocomposites: new strategy to enhance the dispersion of MWCNTs in immiscible poly (trimethylene terephthalate)/polypropylene blends. Eur Polym J 118:595–605. ISSN 0014-3057. https://doi.org/10.1016/j.eurpolymj.2019.06.027 Ajitha AR, Mathew LP, Thomas S (2019) Effect of MA-g-PP compatibilizer on morphology and electrical properties of MWCNT based blend nanocomposites: new strategy to enhance the dispersion of MWCNTs in immiscible poly (trimethylene terephthalate)/polypropylene blends. Eur Polym J 118:595–605. ISSN 0014-3057. https://​doi.​org/​10.​1016/​j.​eurpolymj.​2019.​06.​027
Metadaten
Titel
PTT/Rubber, Thermoplastic and Thermosetting Polymer Blends and IPNs
verfasst von
Rinku Mariam Thomas
Sreedha Sambhudevan
S. Hema
Arunima Reghunadhan
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-7303-1_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.