Skip to main content
Erschienen in: Machine Vision and Applications 1/2021

01.02.2021 | Original Paper

Numerical joint invariant level set formulation with unique image segmentation result

verfasst von: Reza Aghayan

Erschienen in: Machine Vision and Applications | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The level set method is one of the most widely used and powerful techniques in image science such as image/motion segmentation, object tracking, etc. This paper brings up an unstudied issue with discretized level set algorithms about ‘the non-uniqueness’ of segmentation results which is different from the problem of ‘the existence’ of a result. Our solution is to numerically approximate the level set formulation based on suitable combination of some visual joint invariants, leading to the unique segmentation results, therefore unique visual joint invariant numerical signatures—independent of contour initialization and what visual group is applied. To figure out ‘the cause’ of resulting unique segmentations in this scheme, we utilize the level set algorithm to introduce three energy features—called fingerprints, flows, and stem charts. Our experimental results indicate that curvature-based energies can be classified in terms of these characteristics—depending merely on the nature of each energy. Besides, the energies generated by the current discretization are ‘positive,’ while the visual joint invariant curvature-based energies sketch charts with ‘negative’ values.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
As far as I know, unlike the problem of the existence of a solution, it has not appeared in the literature.
 
2
Even if the uniqueness exists in the continuum.
 
3
A computed tomography technique by which arterial and venous vessels are visualized through the body.
 
4
The number of points in the original curve that map to a single generic point in the resulting signature.
 
5
A ‘joint invariant’ of the action of a group G refers to an algebraic function that depends on several points of E, having the property that its value is unchanged under simultaneous action of the group elements on the point configuration—in other words, a joint invariant is a real-valued function \(\mathrm {J}: \mathrm {E}^{\times \mathrm {k}}\longrightarrow {\mathbb {R}}\) so that for each \(\mathrm {g}\in \mathrm {G}\) and any mesh \(\lbrace \mathrm {x}_{1}, \ldots , \mathrm {x}_{\mathrm{k}}\rbrace \subset \mathrm {E}\): \(\mathrm {J}(\mathrm {g}\cdot \mathrm {x}_{1},\ldots ,\mathrm {g}\cdot \mathrm {x}_{\mathrm{k}}) = \mathrm {J}(\mathrm {x}_{1}, \ldots , \mathrm {x}_{\mathrm {k}})\).
 
6
In visual applications, the visual group \({{\mathbb {V}}}\) is either the Euclidean, affine, similarity, or projective group.
 
7
In fact, our scheme replaces the level set curvature \(\kappa \) by the joint curvature \({\kappa ^{\vartriangle }_{S{\mathbb {E}}}}\) of the level-curve in each iteration.
 
8
Since \(\kappa _{\mathrm {S}{\mathbb {I}}}=\kappa _{\mathrm {S}{\mathbb {E}},\mathrm {s}}/\kappa _{\mathrm {S} {\mathbb {E}}}^{2}\), showing the same result in the similarity case seems trivial, therefore we investigated the discussed independence where the LSF (7) is discretized by the affine joint invariants with a completely different ‘nature’ and ‘lots of computational complexity,’ compared to the other ones.
 
9
Hence, from now on, there is no need to be mentioned the name of the visual group used in our approach, and the resulting level set algorithm will be denoted only by “JILS.”
 
10
According to [35], this flexibility is very helpful, for instance to consider equally and unequally spaced meshes, resulting closer approximations to DISCs, and to apply the m-mean signature and the m-difference techniques to minimize the effects of noise and indeterminacy in the resulting signatures. Here, it helps to generate a wide variety of the curvature-based \({\mathbb {V}}\)JIEs.
 
11
In our study, \( 0 \leqslant \alpha , \beta \leqslant 1 \).
 
12
In general, based on our observations, each of these features is able to classify curvature-based energies.
 
Literatur
1.
Zurück zum Zitat Pollefeys, M., Nist\(\acute{{\rm r}}\), D., Frahm, J.-M., et al.: Detailed real-time urban 3D reconstruction from video. Int. J. Comput. Vis. 78, 143–167 (2008) Pollefeys, M., Nist\(\acute{{\rm r}}\), D., Frahm, J.-M., et al.: Detailed real-time urban 3D reconstruction from video. Int. J. Comput. Vis. 78, 143–167 (2008)
2.
Zurück zum Zitat Kolev, K., Klodt, M., Brox, T., Esedoglu, S., Cremers, D.: Continuous global optimization in multiview 3D reconstruction. Int. J. Comput. Vis. 84(1), 80–96 (2009)CrossRef Kolev, K., Klodt, M., Brox, T., Esedoglu, S., Cremers, D.: Continuous global optimization in multiview 3D reconstruction. Int. J. Comput. Vis. 84(1), 80–96 (2009)CrossRef
3.
Zurück zum Zitat Linda, G.S., George, C.S.: Computer Vision. Prentice-Hall, New York (2001) Linda, G.S., George, C.S.: Computer Vision. Prentice-Hall, New York (2001)
4.
Zurück zum Zitat Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recognit. 26, 1277–1294 (1993)CrossRef Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recognit. 26, 1277–1294 (1993)CrossRef
5.
Zurück zum Zitat Lee, L.K., Liew, S.C., Thong, W.J.: A review of image segmentation methodologies in med-ical image, In: Advanced computer and communication engineering technology, pp. 1069–1080. Springer, New York (2015) Lee, L.K., Liew, S.C., Thong, W.J.: A review of image segmentation methodologies in med-ical image, In: Advanced computer and communication engineering technology, pp. 1069–1080. Springer, New York (2015)
6.
Zurück zum Zitat Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)MathSciNetCrossRef Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)MathSciNetCrossRef
7.
Zurück zum Zitat Saito, A., Nawano, S., Shimizu, A.: Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs. Med. Image Anal. 28, 46–65 (2016)CrossRef Saito, A., Nawano, S., Shimizu, A.: Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs. Med. Image Anal. 28, 46–65 (2016)CrossRef
8.
Zurück zum Zitat Wu, Q., Gan, Y., Lin, B., Zhang, Q., Chang, H.: An active contour model based on fused texture features for image segmentation. Neurocomputing 151, 1133–1141 (2015)CrossRef Wu, Q., Gan, Y., Lin, B., Zhang, Q., Chang, H.: An active contour model based on fused texture features for image segmentation. Neurocomputing 151, 1133–1141 (2015)CrossRef
9.
Zurück zum Zitat Chang, H., Chen, Z., Huang, Q., Shi, J., Li, X.: Graph-based learning for segmentation of 3D ultrasound images. Neurocomputing 151, 632–644 (2015)CrossRef Chang, H., Chen, Z., Huang, Q., Shi, J., Li, X.: Graph-based learning for segmentation of 3D ultrasound images. Neurocomputing 151, 632–644 (2015)CrossRef
10.
Zurück zum Zitat Abdelsamea, M.M., Gnecco, G., Gaber, M.M.: An efficient self-organizing active contour model for image segmentation. Neurocomputing 149, 820–835 (2015)CrossRef Abdelsamea, M.M., Gnecco, G., Gaber, M.M.: An efficient self-organizing active contour model for image segmentation. Neurocomputing 149, 820–835 (2015)CrossRef
11.
Zurück zum Zitat Gibou, F., Fedkiw, R., Osher, S.: A review of level-set methods and some recent applications. J. Comput. Phys. 353, 82–109 (2018)MathSciNetCrossRef Gibou, F., Fedkiw, R., Osher, S.: A review of level-set methods and some recent applications. J. Comput. Phys. 353, 82–109 (2018)MathSciNetCrossRef
13.
Zurück zum Zitat Li, C.M., Xu, C.Y., Gui, C.F., Fox, M.D.: Level set evolution without re-initialization: a new variational formulation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Diego, pp. 430–436 (2005) Li, C.M., Xu, C.Y., Gui, C.F., Fox, M.D.: Level set evolution without re-initialization: a new variational formulation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Diego, pp. 430–436 (2005)
14.
Zurück zum Zitat Paragios, N., Deriche, R.: Geodesic active contours and level sets for detection and tracking of moving objects. IEEE Transaction on Pattern Analysis and Machine Intelligence 22, 1–15 (2000)CrossRef Paragios, N., Deriche, R.: Geodesic active contours and level sets for detection and tracking of moving objects. IEEE Transaction on Pattern Analysis and Machine Intelligence 22, 1–15 (2000)CrossRef
15.
Zurück zum Zitat Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22, 61–79 (1997)CrossRef Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22, 61–79 (1997)CrossRef
16.
Zurück zum Zitat Ning, J., Zhang, L., Zhang, D., Wu, C.: Interactive image segmentation by maximal simi-larity based region merging. Pattern Recogn. 43, 445–456 (2010)CrossRef Ning, J., Zhang, L., Zhang, D., Wu, C.: Interactive image segmentation by maximal simi-larity based region merging. Pattern Recogn. 43, 445–456 (2010)CrossRef
17.
Zurück zum Zitat Zhang, K., Song, H., Zhang, L.: Active contours driven by local image fitting energy. Pattern Recogn. 43, 1199–1206 (2010)CrossRef Zhang, K., Song, H., Zhang, L.: Active contours driven by local image fitting energy. Pattern Recogn. 43, 1199–1206 (2010)CrossRef
18.
Zurück zum Zitat Wan, M., Gu, G., Qian, W., Ren, K., Chen, Q.: Hybrid active contour model based on edge gradients and regional multi-features for infrared image segmentation. Optik 140, 833–842 (2017)CrossRef Wan, M., Gu, G., Qian, W., Ren, K., Chen, Q.: Hybrid active contour model based on edge gradients and regional multi-features for infrared image segmentation. Optik 140, 833–842 (2017)CrossRef
19.
Zurück zum Zitat Çataloluk, H., Çelebi, F.H.: A novel hybrid model for two-phase image segmentation: GSA based Chan–Vese algorithm. Eng. Appl. Artif. Intell. 73, 22–30 (2018)CrossRef Çataloluk, H., Çelebi, F.H.: A novel hybrid model for two-phase image segmentation: GSA based Chan–Vese algorithm. Eng. Appl. Artif. Intell. 73, 22–30 (2018)CrossRef
20.
Zurück zum Zitat Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)CrossRef Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)CrossRef
21.
Zurück zum Zitat Mumford, D., Shah, J.: Optimal approximation by piecewise smooth function and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)MathSciNetCrossRef Mumford, D., Shah, J.: Optimal approximation by piecewise smooth function and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)MathSciNetCrossRef
22.
Zurück zum Zitat Tsai, A., Yezzi, A., Willsky, A.: Curve evolution implementation of the Mumford–Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. Image Process. 10, 1169–1186 (2001)CrossRef Tsai, A., Yezzi, A., Willsky, A.: Curve evolution implementation of the Mumford–Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. Image Process. 10, 1169–1186 (2001)CrossRef
23.
Zurück zum Zitat Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the Mumford–Shah model. Int. J. Comput. Vis. 50, 271–293 (2002)CrossRef Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the Mumford–Shah model. Int. J. Comput. Vis. 50, 271–293 (2002)CrossRef
24.
Zurück zum Zitat Zhang, K., Zhang, L., Song, H., Zhou, W.: Active contours with selective local or global segmentation: a new formulation and level set method. Image Vis. Comput. 28, 668–676 (2010)CrossRef Zhang, K., Zhang, L., Song, H., Zhou, W.: Active contours with selective local or global segmentation: a new formulation and level set method. Image Vis. Comput. 28, 668–676 (2010)CrossRef
25.
Zurück zum Zitat Li, C.M., Kao, C.Y., Gore, J.C., Ding, Z.H.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17, 1940–1949 (2008)MathSciNetCrossRef Li, C.M., Kao, C.Y., Gore, J.C., Ding, Z.H.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17, 1940–1949 (2008)MathSciNetCrossRef
26.
Zurück zum Zitat Lankton, S., Tannenbaum, A.: Localizing region-based active contours. IEEE Trans. Image Process. 17, 2029–2039 (2008)MathSciNetCrossRef Lankton, S., Tannenbaum, A.: Localizing region-based active contours. IEEE Trans. Image Process. 17, 2029–2039 (2008)MathSciNetCrossRef
27.
Zurück zum Zitat Wang, X., Huang, D., Xu, H.: An efficient local Chan–Vese model for image segmentation. Pattern Recogn. 43, 603–618 (2010)CrossRef Wang, X., Huang, D., Xu, H.: An efficient local Chan–Vese model for image segmentation. Pattern Recogn. 43, 603–618 (2010)CrossRef
28.
Zurück zum Zitat Wang, L., Li, C., Sun, Q., Xia, D., Kao, C.-Y.: Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation. Comput. Med. Imaging Graph. 33, 520–531 (2009)CrossRef Wang, L., Li, C., Sun, Q., Xia, D., Kao, C.-Y.: Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation. Comput. Med. Imaging Graph. 33, 520–531 (2009)CrossRef
29.
Zurück zum Zitat Cao, J., Wu, X.: A novel level set method for image segmentation by combining local and global information. J. Mod. Opt. 64, 2399–2412 (2017)CrossRef Cao, J., Wu, X.: A novel level set method for image segmentation by combining local and global information. J. Mod. Opt. 64, 2399–2412 (2017)CrossRef
30.
Zurück zum Zitat Olver, P.J.: Classical Invariant Theory. Cambridge University Press, New York (1999)CrossRef Olver, P.J.: Classical Invariant Theory. Cambridge University Press, New York (1999)CrossRef
31.
Zurück zum Zitat Calabi, E., Olver, P.J., Shakiban, C., Tannenbaum, A., Haker, S.: Differential and numerically invariant signature curves applied to object recognition. Int. J. Comput. Vis. 26, 107–135 (1998)CrossRef Calabi, E., Olver, P.J., Shakiban, C., Tannenbaum, A., Haker, S.: Differential and numerically invariant signature curves applied to object recognition. Int. J. Comput. Vis. 26, 107–135 (1998)CrossRef
32.
Zurück zum Zitat Cartan, É.: La méthode du repére mobile, la théorie des groupes continus et les espaces général -isés, Exposés de Géométrie, no. 5, Paris, Hermann et cie (1935) Cartan, É.: La méthode du repére mobile, la théorie des groupes continus et les espaces général -isés, Exposés de Géométrie, no. 5, Paris, Hermann et cie (1935)
33.
Zurück zum Zitat Pauwels, E., Moons, T., Van Gool, L.J., Kempenaers, P., Oosterlinck, A.: Foundations of semi-differential invariants. Int. J. Comput. Vis. 14, 25–48 (1995)CrossRef Pauwels, E., Moons, T., Van Gool, L.J., Kempenaers, P., Oosterlinck, A.: Foundations of semi-differential invariants. Int. J. Comput. Vis. 14, 25–48 (1995)CrossRef
34.
Zurück zum Zitat Boutin, M.: Numerically invariant signature curves. Int. J. Comput. Vis. 40(3), 235–248 (2000) CrossRef Boutin, M.: Numerically invariant signature curves. Int. J. Comput. Vis. 40(3), 235–248 (2000) CrossRef
35.
Zurück zum Zitat Aghayan, R., Ellis, T., Dehmeshki, J.: Planar numerical signature theory applied to object recognition. J. Math. Imaging Vis. 48(3), 583–605 (2014)MathSciNetCrossRef Aghayan, R., Ellis, T., Dehmeshki, J.: Planar numerical signature theory applied to object recognition. J. Math. Imaging Vis. 48(3), 583–605 (2014)MathSciNetCrossRef
36.
Zurück zum Zitat Aghayan, R.: Orientation-invariant numerically invariant joint signatures in curve analysis. Int. J. Comput. Math. 3(1), 13–30 (2018)MathSciNet Aghayan, R.: Orientation-invariant numerically invariant joint signatures in curve analysis. Int. J. Comput. Math. 3(1), 13–30 (2018)MathSciNet
37.
Zurück zum Zitat Aghayan, R.: Signature-inverse theorem in mesh group-planes \(-\) The new formulation. In: Proceedings of the 49th Annual Iranian Mathematics Conference—Computer Science Section, Tehran, IRAN, August 23–26, pp. 2310–2332 (2018) Aghayan, R.: Signature-inverse theorem in mesh group-planes \(-\) The new formulation. In: Proceedings of the 49th Annual Iranian Mathematics Conference—Computer Science Section, Tehran, IRAN, August 23–26, pp. 2310–2332 (2018)
38.
Zurück zum Zitat Aghayan, R.: Visual groups and their structural equations. In: Proceedings of the 49th Annual Iranian Mathematics Conference—Geometry Section, Tehran, IRAN, August 23–26, pp. 21–35 (2018) Aghayan, R.: Visual groups and their structural equations. In: Proceedings of the 49th Annual Iranian Mathematics Conference—Geometry Section, Tehran, IRAN, August 23–26, pp. 21–35 (2018)
40.
Zurück zum Zitat Aghayan, R.: Generating visual invariants applied to curve analysis, revised (2020) Aghayan, R.: Generating visual invariants applied to curve analysis, revised (2020)
Metadaten
Titel
Numerical joint invariant level set formulation with unique image segmentation result
verfasst von
Reza Aghayan
Publikationsdatum
01.02.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Machine Vision and Applications / Ausgabe 1/2021
Print ISSN: 0932-8092
Elektronische ISSN: 1432-1769
DOI
https://doi.org/10.1007/s00138-020-01134-w

Weitere Artikel der Ausgabe 1/2021

Machine Vision and Applications 1/2021 Zur Ausgabe

Premium Partner