Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 2/2014

01.08.2014 | RESEARCH PAPER

A level-set-based topology and shape optimization method for continuum structure under geometric constraints

verfasst von: Tao Liu, Shuting Wang, Bin Li, Liang Gao

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recent advances in level-set-based shape and topology optimization rely on free-form implicit representations to support boundary deformations and topological changes. In practice, a continuum structure is usually designed to meet parametric shape optimization, which is formulated directly in terms of meaningful geometric design variables, but usually does not support free-form boundary and topological changes. In order to solve the disadvantage of traditional step-type structural optimization, a unified optimization method which can fulfill the structural topology, shape, and sizing optimization at the same time is presented. The unified structural optimization model is described by a parameterized level set function that applies compactly supported radial basis functions (CS-RBFs) with favorable smoothness and accuracy for interpolation. The expansion coefficients of the interpolation function are treated as the design variables, which reflect the structural performance impacts of the topology, shape, and geometric constraints. Accordingly, the original topological shape optimization problem under geometric constraint is fully transformed into a simple parameter optimization problem; in other words, the optimization contains the expansion coefficients of the interpolation function in terms of limited design variables. This parameterization transforms the difficult shape and topology optimization problems with geometric constraints into a relatively straightforward parameterized problem to which many gradient-based optimization techniques can be applied. More specifically, the extended finite element method (XFEM) is adopted to improve the accuracy of boundary resolution. At last, combined with the optimality criteria method, several numerical examples are presented to demonstrate the applicability and potential of the presented method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Allaire G (2001) Shape optimization by the homogenization method. Springer, New York Allaire G (2001) Shape optimization by the homogenization method. Springer, New York
Zurück zum Zitat Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393MATHMathSciNetCrossRef Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393MATHMathSciNetCrossRef
Zurück zum Zitat Allaire G, De Gournay F, Jouve F, Toader A (2005) Structural optimization using topological and shape sensitivity via a level set method. Control Cybern 34(1):59MATHMathSciNet Allaire G, De Gournay F, Jouve F, Toader A (2005) Structural optimization using topological and shape sensitivity via a level set method. Control Cybern 34(1):59MATHMathSciNet
Zurück zum Zitat Béchet E, Minnebo H, Moës N, Burgardt B (2005) Improved implementation and robustness study of the X-FEM for stress analysis around cracks. Int J Numer Methods Eng 64(8):1033–1056MATHCrossRef Béchet E, Minnebo H, Moës N, Burgardt B (2005) Improved implementation and robustness study of the X-FEM for stress analysis around cracks. Int J Numer Methods Eng 64(8):1033–1056MATHCrossRef
Zurück zum Zitat Bajaj C (1997) Introduction to implicit surfaces. Morgan Kaufmann Publishers, Los AltosMATH Bajaj C (1997) Introduction to implicit surfaces. Morgan Kaufmann Publishers, Los AltosMATH
Zurück zum Zitat Belytschko T, Chen H, Xu J, Zi G (2003a) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Methods Eng 58(12):1873–1905MATHCrossRef Belytschko T, Chen H, Xu J, Zi G (2003a) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Methods Eng 58(12):1873–1905MATHCrossRef
Zurück zum Zitat Belytschko T, Parimi C, Moës N, Sukumar N, Usui S (2003b) Structured extended finite element methods for solids defined by implicit surfaces. Int J Numer Methods Eng 56(4):609–635MATHCrossRef Belytschko T, Parimi C, Moës N, Sukumar N, Usui S (2003b) Structured extended finite element methods for solids defined by implicit surfaces. Int J Numer Methods Eng 56(4):609–635MATHCrossRef
Zurück zum Zitat Belytschko T, Xiao S, Parimi C (2003c) Topology optimization with implicit functions and regularization. Int J Numer Methods Eng 57(8):1177–1196MATHCrossRef Belytschko T, Xiao S, Parimi C (2003c) Topology optimization with implicit functions and regularization. Int J Numer Methods Eng 57(8):1177–1196MATHCrossRef
Zurück zum Zitat Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224CrossRef Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224CrossRef
Zurück zum Zitat Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9):635–654 Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9):635–654
Zurück zum Zitat Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin
Zurück zum Zitat Buhmann MD (2003) Radial basis functions: theory and implementations. Cambridge University Press, New YorkCrossRef Buhmann MD (2003) Radial basis functions: theory and implementations. Cambridge University Press, New YorkCrossRef
Zurück zum Zitat Burger M, Hackl B, Ring W (2004) Incorporating topological derivatives into level set methods. J Comput Phys 194(1):344–362MATHMathSciNetCrossRef Burger M, Hackl B, Ring W (2004) Incorporating topological derivatives into level set methods. J Comput Phys 194(1):344–362MATHMathSciNetCrossRef
Zurück zum Zitat Cecil T, Qian J, Osher S (2004) Numerical methods for high dimensional Hamilton–Jacobi equations using radial basis functions. J Comput Phys 196(1):327–347MATHMathSciNetCrossRef Cecil T, Qian J, Osher S (2004) Numerical methods for high dimensional Hamilton–Jacobi equations using radial basis functions. J Comput Phys 196(1):327–347MATHMathSciNetCrossRef
Zurück zum Zitat Chen JQ, Shapiro V, Suresh K, Tsukanov I (2007) Shape optimization with topological changes and parametric control. Int J Numer Methods Eng 71(3):313–346MATHMathSciNetCrossRef Chen JQ, Shapiro V, Suresh K, Tsukanov I (2007) Shape optimization with topological changes and parametric control. Int J Numer Methods Eng 71(3):313–346MATHMathSciNetCrossRef
Zurück zum Zitat Kansa E, Power H, Fasshauer G, Ling L (2004) A volumetric integral radial basis function method for time-dependent partial differential equations. I. Formulation, Eng Anal Bound Elem 28(10):1191–1206MATHCrossRef Kansa E, Power H, Fasshauer G, Ling L (2004) A volumetric integral radial basis function method for time-dependent partial differential equations. I. Formulation, Eng Anal Bound Elem 28(10):1191–1206MATHCrossRef
Zurück zum Zitat Kreissl S, Maute K (2012) Level set based fluid topology optimization using the extended finite element method. Struct Multidiscip Optim 46(3):311–326MATHMathSciNetCrossRef Kreissl S, Maute K (2012) Level set based fluid topology optimization using the extended finite element method. Struct Multidiscip Optim 46(3):311–326MATHMathSciNetCrossRef
Zurück zum Zitat Kreissl S, Pingen G, Maute K (2011) An explicit level set approach for generalized shape optimization of fluids with the lattice Boltzmann method. Int J Numer Methods Fluids 65(5):496–519MATHCrossRef Kreissl S, Pingen G, Maute K (2011) An explicit level set approach for generalized shape optimization of fluids with the lattice Boltzmann method. Int J Numer Methods Fluids 65(5):496–519MATHCrossRef
Zurück zum Zitat Liu X, Xiao Q, Karihaloo B (2004) XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi - materials. Int J Numer Methods Eng 59(8):1103–1118MATHCrossRef Liu X, Xiao Q, Karihaloo B (2004) XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi - materials. Int J Numer Methods Eng 59(8):1103–1118MATHCrossRef
Zurück zum Zitat Luo Z, Tong L (2008) A level set method for shape and topology optimization of large - displacement compliant mechanisms. Int J Numer Methods Eng 76(6):862–892MATHMathSciNetCrossRef Luo Z, Tong L (2008) A level set method for shape and topology optimization of large - displacement compliant mechanisms. Int J Numer Methods Eng 76(6):862–892MATHMathSciNetCrossRef
Zurück zum Zitat Luo Z, Chen L, Yang J, Zhang Y, Abdel-Malek K (2005) Compliant mechanism design using multi-objective topology optimization scheme of continuum structures. Struct Multidiscip Optim 30(2):142–154CrossRef Luo Z, Chen L, Yang J, Zhang Y, Abdel-Malek K (2005) Compliant mechanism design using multi-objective topology optimization scheme of continuum structures. Struct Multidiscip Optim 30(2):142–154CrossRef
Zurück zum Zitat Luo Z, Tong L, Wang MY, Wang S (2007) Shape and topology optimization of compliant mechanisms using a parameterization level set method. J Comput Phys 227(1):680–705MATHMathSciNetCrossRef Luo Z, Tong L, Wang MY, Wang S (2007) Shape and topology optimization of compliant mechanisms using a parameterization level set method. J Comput Phys 227(1):680–705MATHMathSciNetCrossRef
Zurück zum Zitat Luo Z, Wang MY, Wang S, Wei P (2008) A level set-based parameterization method for structural shape and topology optimization. Int J Numer Methods Eng 76(1):1–26MATHMathSciNetCrossRef Luo Z, Wang MY, Wang S, Wei P (2008) A level set-based parameterization method for structural shape and topology optimization. Int J Numer Methods Eng 76(1):1–26MATHMathSciNetCrossRef
Zurück zum Zitat Luo Z, Yang J, Chen L (2006) A new procedure for aerodynamic missile designs using topological optimization approach of continuum structures. Aerosp Sci Technol 10(5):364–373MATHCrossRef Luo Z, Yang J, Chen L (2006) A new procedure for aerodynamic missile designs using topological optimization approach of continuum structures. Aerosp Sci Technol 10(5):364–373MATHCrossRef
Zurück zum Zitat Mei Y, Wang X, Cheng G (2008) A feature-based topological optimization for structure design. Adv Eng Softw 39(2):71–87CrossRef Mei Y, Wang X, Cheng G (2008) A feature-based topological optimization for structure design. Adv Eng Softw 39(2):71–87CrossRef
Zurück zum Zitat Osher S (2003) Geometric level set methods in imaging, vision, and graphics. Springer, New YorkMATH Osher S (2003) Geometric level set methods in imaging, vision, and graphics. Springer, New YorkMATH
Zurück zum Zitat Osher S, Fedkiw R (2002) Level set methods and dynamic implicit surfaces. Springer, New York Osher S, Fedkiw R (2002) Level set methods and dynamic implicit surfaces. Springer, New York
Zurück zum Zitat Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49MATHMathSciNetCrossRef Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49MATHMathSciNetCrossRef
Zurück zum Zitat Osher SJ, Santosa F (2001) Level set methods for optimization problems involving geometry and constraints: I. Frequencies of a two-density in homogeneous drum. J Comput Phys 171(1):272–288MATHMathSciNetCrossRef Osher SJ, Santosa F (2001) Level set methods for optimization problems involving geometry and constraints: I. Frequencies of a two-density in homogeneous drum. J Comput Phys 171(1):272–288MATHMathSciNetCrossRef
Zurück zum Zitat Pingen G, Waidmann M, Evgrafov A, Maute K (2007) Application of a Parametric-level-set approach to topology optimization of fluids with the Navier-Stokes and lattice Boltzmann equations. Proceedings of WCSMO2007 Pingen G, Waidmann M, Evgrafov A, Maute K (2007) Application of a Parametric-level-set approach to topology optimization of fluids with the Navier-Stokes and lattice Boltzmann equations. Proceedings of WCSMO2007
Zurück zum Zitat Pingen G, Waidmann M, Evgrafov A, Maute K (2009) A parametric level-set approach for topology optimization of flow domains. Struct Multidiscip Optim 41(1):117–131MathSciNetCrossRef Pingen G, Waidmann M, Evgrafov A, Maute K (2009) A parametric level-set approach for topology optimization of flow domains. Struct Multidiscip Optim 41(1):117–131MathSciNetCrossRef
Zurück zum Zitat Rozvany GIN (1992) Shape and layout optimization of structural systems and optimality criteria methods. Springer, New YorkMATHCrossRef Rozvany GIN (1992) Shape and layout optimization of structural systems and optimality criteria methods. Springer, New YorkMATHCrossRef
Zurück zum Zitat Rozvany GIN (2000) The SIMP Method in Topology Optimization-Theoretical Background, Advantages and New Applications. In: Proceedings of 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Long Beach Rozvany GIN (2000) The SIMP Method in Topology Optimization-Theoretical Background, Advantages and New Applications. In: Proceedings of 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Long Beach
Zurück zum Zitat Rozvany GIN, Bendsoe MP, Kirsch U (1995) Layout optimization of structures. Appl Mech Rev ASME 48:41–119 Rozvany GIN, Bendsoe MP, Kirsch U (1995) Layout optimization of structures. Appl Mech Rev ASME 48:41–119
Zurück zum Zitat Rvachev VL (1963) On the analytical description of some geometric objects. Reports Ukrainian Acad Sci 153(4):765–767 Rvachev VL (1963) On the analytical description of some geometric objects. Reports Ukrainian Acad Sci 153(4):765–767
Zurück zum Zitat Rvachev V (1982) Theory of R-functions and some applications. Kiev, Naukova DumkaMATH Rvachev V (1982) Theory of R-functions and some applications. Kiev, Naukova DumkaMATH
Zurück zum Zitat Schaback R, Wendland H (1999) Using compactly supported radial basis functions to solve partial differential equations. Bound Elem Technol 13:311–324 Schaback R, Wendland H (1999) Using compactly supported radial basis functions to solve partial differential equations. Bound Elem Technol 13:311–324
Zurück zum Zitat Schaback R, Wendland H (2001) Characterization and construction of radial basis functions. In: Dyn N, Leviatan D, Pinkus A (eds) Multivariate approximation and applications. Cambridge University Press, Cambridge, pp 1–24CrossRef Schaback R, Wendland H (2001) Characterization and construction of radial basis functions. In: Dyn N, Leviatan D, Pinkus A (eds) Multivariate approximation and applications. Cambridge University Press, Cambridge, pp 1–24CrossRef
Zurück zum Zitat Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge Monograph on Applied and Computational Mathematics. Cambridge University Press, Cambridge Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge Monograph on Applied and Computational Mathematics. Cambridge University Press, Cambridge
Zurück zum Zitat Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528MATHMathSciNetCrossRef Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528MATHMathSciNetCrossRef
Zurück zum Zitat Shapiro V (1991) Theory of R-functions and applications: a primer. Technical Report, Cornell University Shapiro V (1991) Theory of R-functions and applications: a primer. Technical Report, Cornell University
Zurück zum Zitat Shapiro V (1994) Real functions for representation of rigid solids. Comput Aided Geom Des 11(2):153–175MATHCrossRef Shapiro V (1994) Real functions for representation of rigid solids. Comput Aided Geom Des 11(2):153–175MATHCrossRef
Zurück zum Zitat Shapiro V, Tsukanov I (1999) Implicit functions with guaranteed differential properties. In: Proceedings of the fifth ACM Symposium on Solid Modeling and Applications. ACM, New York, pp 258–269 Shapiro V, Tsukanov I (1999) Implicit functions with guaranteed differential properties. In: Proceedings of the fifth ACM Symposium on Solid Modeling and Applications. ACM, New York, pp 258–269
Zurück zum Zitat Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21(2):120–127CrossRef Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21(2):120–127CrossRef
Zurück zum Zitat Solem J, Overgaard N (2005) A gradient descent procedure for variational dynamic surface problems with constraints. In: variational, geometric, and level set methods in computer vision. Springer, Berlin Heidelberg, pp 332–343 Solem J, Overgaard N (2005) A gradient descent procedure for variational dynamic surface problems with constraints. In: variational, geometric, and level set methods in computer vision. Springer, Berlin Heidelberg, pp 332–343
Zurück zum Zitat Sukumar N, Belytschko T (2000) Arbitrary branched and intersecting cracks with the extended finite element method. Int J Numer Methods Eng 48:1741–1760MATHCrossRef Sukumar N, Belytschko T (2000) Arbitrary branched and intersecting cracks with the extended finite element method. Int J Numer Methods Eng 48:1741–1760MATHCrossRef
Zurück zum Zitat Sukumar N, Chopp D, Moës N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Eng 190(46):6183–6200MATHCrossRef Sukumar N, Chopp D, Moës N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Eng 190(46):6183–6200MATHCrossRef
Zurück zum Zitat Svanberg K (2005) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetCrossRef Svanberg K (2005) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetCrossRef
Zurück zum Zitat Tsai R, Osher S (2003) Review article: level set methods and their applications in image science. Commun Math Sci 1(4):1–20MathSciNetCrossRef Tsai R, Osher S (2003) Review article: level set methods and their applications in image science. Commun Math Sci 1(4):1–20MathSciNetCrossRef
Zurück zum Zitat Wang MY, Wang X (2004a) “Color” level sets: a multi-phase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193(6):469–496MATHCrossRef Wang MY, Wang X (2004a) “Color” level sets: a multi-phase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193(6):469–496MATHCrossRef
Zurück zum Zitat Wang MY, Wang X (2004b) PDE-driven level sets, shape sensitivity and curvature flow for structural topology optimization. Comput Model Eng Sci 6(4):373–396MATH Wang MY, Wang X (2004b) PDE-driven level sets, shape sensitivity and curvature flow for structural topology optimization. Comput Model Eng Sci 6(4):373–396MATH
Zurück zum Zitat Wang S, Wang MY (2006a) A moving superimposed finite element method for structural topology optimization. Int J Numer Methods Eng 65(11):1892–1922MATHCrossRef Wang S, Wang MY (2006a) A moving superimposed finite element method for structural topology optimization. Int J Numer Methods Eng 65(11):1892–1922MATHCrossRef
Zurück zum Zitat Wang S, Wang MY (2006b) Radial basis functions and level set method for structural topology optimization. Int J Numer Methods Eng 65(12):2060–2090MATHCrossRef Wang S, Wang MY (2006b) Radial basis functions and level set method for structural topology optimization. Int J Numer Methods Eng 65(12):2060–2090MATHCrossRef
Zurück zum Zitat Wang MY, Wei P (2005) Topology optimization with level set method incorporating topological derivative. In: Proceedings of 6th World Congress of Structural and Multidisciplinary Optimization. Rio de Janeiro Wang MY, Wei P (2005) Topology optimization with level set method incorporating topological derivative. In: Proceedings of 6th World Congress of Structural and Multidisciplinary Optimization. Rio de Janeiro
Zurück zum Zitat Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1):227–246MATHCrossRef Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1):227–246MATHCrossRef
Zurück zum Zitat Wang MY, Chen S, Wang X, Mei Y (2005) Design of multi-material compliant mechanisms using level-set methods. J Mech Des 127(5):941–956CrossRef Wang MY, Chen S, Wang X, Mei Y (2005) Design of multi-material compliant mechanisms using level-set methods. J Mech Des 127(5):941–956CrossRef
Zurück zum Zitat Wei P, Wang MY, Xing X (2010) A study on X-FEM in continuum structural optimization using a level set model. Comput Aided Des 42(8):708–719CrossRef Wei P, Wang MY, Xing X (2010) A study on X-FEM in continuum structural optimization using a level set model. Comput Aided Des 42(8):708–719CrossRef
Zurück zum Zitat Wendland H (1998) Error estimates for interpolation by compactly supported radial basis functions of minimal degree. J Approx Theory 93(2):258–272MATHMathSciNetCrossRef Wendland H (1998) Error estimates for interpolation by compactly supported radial basis functions of minimal degree. J Approx Theory 93(2):258–272MATHMathSciNetCrossRef
Zurück zum Zitat Xia Q, Wang MY, Wang S, Chen S (2006) Semi-Lagrange method for level-set-based structural topology and shape optimization. Struct Multidiscip Optim 31(6):419–429MATHMathSciNetCrossRef Xia Q, Wang MY, Wang S, Chen S (2006) Semi-Lagrange method for level-set-based structural topology and shape optimization. Struct Multidiscip Optim 31(6):419–429MATHMathSciNetCrossRef
Zurück zum Zitat Zhao H-K, Chan T, Merriman B, Osher S (1996) A variational level set approach to multiphase motion. J Comput Phys 127(1):179–195MATHMathSciNetCrossRef Zhao H-K, Chan T, Merriman B, Osher S (1996) A variational level set approach to multiphase motion. J Comput Phys 127(1):179–195MATHMathSciNetCrossRef
Metadaten
Titel
A level-set-based topology and shape optimization method for continuum structure under geometric constraints
verfasst von
Tao Liu
Shuting Wang
Bin Li
Liang Gao
Publikationsdatum
01.08.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 2/2014
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-014-1045-7

Weitere Artikel der Ausgabe 2/2014

Structural and Multidisciplinary Optimization 2/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.