Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 4/2016

05.11.2015 | RESEARCH PAPER

An algorithm for eradicating the effects of void elements on structural topology optimization for nonlinear compliance

verfasst von: Quantian Luo, Liyong Tong

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents an efficient algorithm for structural topology optimization with material and/or geometric nonlinearities using the moving iso-surface threshold (MIST) method. In this algorithm, all finite element analyses (FEA) are conducted for sub-domains with solid and grey elements via removing all void elements, whereas the response function is constructed in the full design domain. This algorithm allows the removed void elements to be involved in design variable update and to reappear in subsequent iterations. As there are solid materials only in the final optimal topology, problems such as ‘layering’ and ‘islanding’ caused by void elements in topology optimization for structures considering large deformations are completely eradicated. Challenges such as ‘material reappearance’ and ‘discontinuity’ owing to the removal of void elements are resolved. Numerical results for three typical structures and their comparison with those in the literature are presented to validate the present algorithm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Bathe K-J (1996) Finite element procedures. Prentice Hall, Englewood CliffsMATH Bathe K-J (1996) Finite element procedures. Prentice Hall, Englewood CliffsMATH
Zurück zum Zitat Bendsoe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, BerlinMATH Bendsoe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, BerlinMATH
Zurück zum Zitat Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654MATH Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654MATH
Zurück zum Zitat Bruns TE, Sigmund O (2004) Toward the topology design of mechanisms that exhibit snap-through behavior. Comput Methods Appl Mech Eng 193(36–38):3973–4000MathSciNetCrossRefMATH Bruns TE, Sigmund O (2004) Toward the topology design of mechanisms that exhibit snap-through behavior. Comput Methods Appl Mech Eng 193(36–38):3973–4000MathSciNetCrossRefMATH
Zurück zum Zitat Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459CrossRefMATH Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459CrossRefMATH
Zurück zum Zitat Bruns TE, Tortorelli DA (2003) An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. Int J Numer Methods Eng 57(10):1413–1430CrossRefMATH Bruns TE, Tortorelli DA (2003) An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. Int J Numer Methods Eng 57(10):1413–1430CrossRefMATH
Zurück zum Zitat Bruns TE, Sigmund O, Tortorelli DA (2002) Numerical methods for the topology optimization of structures that exhibit snap-through. Int J Numer Methods Eng 55(10):1215–1237CrossRefMATH Bruns TE, Sigmund O, Tortorelli DA (2002) Numerical methods for the topology optimization of structures that exhibit snap-through. Int J Numer Methods Eng 55(10):1215–1237CrossRefMATH
Zurück zum Zitat Buhl T, Pedersen CBW, Sigmund O (2000) Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidiscip Optim 19(2):93–104CrossRef Buhl T, Pedersen CBW, Sigmund O (2000) Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidiscip Optim 19(2):93–104CrossRef
Zurück zum Zitat Cho S, Jung H-S (2003) Design sensitivity analysis and topology optimization of displacement–loaded non-linear structures. Comput Methods Appl Mech Eng 192(22–24):2539–2553CrossRefMATH Cho S, Jung H-S (2003) Design sensitivity analysis and topology optimization of displacement–loaded non-linear structures. Comput Methods Appl Mech Eng 192(22–24):2539–2553CrossRefMATH
Zurück zum Zitat Cho S, Kwak J (2006) Topology design optimization of geometrically non-linear structures using mesh free method. Comput Methods Appl Mech Eng 195(44–47):5909–5925MathSciNetCrossRefMATH Cho S, Kwak J (2006) Topology design optimization of geometrically non-linear structures using mesh free method. Comput Methods Appl Mech Eng 195(44–47):5909–5925MathSciNetCrossRefMATH
Zurück zum Zitat Eom YS, Han SY (2014) A new topology optimization scheme for nonlinear structures. J Mech Sci Technol 28(7):2779–2786CrossRef Eom YS, Han SY (2014) A new topology optimization scheme for nonlinear structures. J Mech Sci Technol 28(7):2779–2786CrossRef
Zurück zum Zitat Gea HC, Luo J (2001) Topology optimization of structures with geometrical nonlinearities. Comput Struct 79(20–21):1977–1985CrossRef Gea HC, Luo J (2001) Topology optimization of structures with geometrical nonlinearities. Comput Struct 79(20–21):1977–1985CrossRef
Zurück zum Zitat Gomes FAM, Senne TA (2011) An SLP algorithm and its application to topology optimization. Comput Appl Math 30(1):53–89MathSciNetMATH Gomes FAM, Senne TA (2011) An SLP algorithm and its application to topology optimization. Comput Appl Math 30(1):53–89MathSciNetMATH
Zurück zum Zitat Gomes FAM, Senne TA (2014) An algorithm for the topology optimization of geometrically nonlinear structures. Int J Numer Methods Eng 99(6):391–409MathSciNetCrossRef Gomes FAM, Senne TA (2014) An algorithm for the topology optimization of geometrically nonlinear structures. Int J Numer Methods Eng 99(6):391–409MathSciNetCrossRef
Zurück zum Zitat Haftka RT, Gurdal Z (1992) Elements of structural optimization, 3rd edn. Kluwer Academic Publishers, DordrechtCrossRefMATH Haftka RT, Gurdal Z (1992) Elements of structural optimization, 3rd edn. Kluwer Academic Publishers, DordrechtCrossRefMATH
Zurück zum Zitat He Q, Kang Z, Wang Y (2014) A topology optimization method for geometrically nonlinear structures with meshless analysis and independent density field interpolation. Comput Mech 54:629–644MathSciNetCrossRefMATH He Q, Kang Z, Wang Y (2014) A topology optimization method for geometrically nonlinear structures with meshless analysis and independent density field interpolation. Comput Mech 54:629–644MathSciNetCrossRefMATH
Zurück zum Zitat Huang X, Xie YM (2007) Bidirectional evolutionary topology optimization for structures with geometrical and material nonlinearities. AIAA J 45(1):308–313MathSciNetCrossRef Huang X, Xie YM (2007) Bidirectional evolutionary topology optimization for structures with geometrical and material nonlinearities. AIAA J 45(1):308–313MathSciNetCrossRef
Zurück zum Zitat Huang X, Xie YM (2008) Topology optimization of nonlinear structures under displacement loading. Eng Struct 30(7):2057–2068CrossRef Huang X, Xie YM (2008) Topology optimization of nonlinear structures under displacement loading. Eng Struct 30(7):2057–2068CrossRef
Zurück zum Zitat Jog CS (2009) A dual algorithm for the topology optimization of non-linear elastic structures. Int J Numer Methods Eng 77(4):502–517MathSciNetCrossRefMATH Jog CS (2009) A dual algorithm for the topology optimization of non-linear elastic structures. Int J Numer Methods Eng 77(4):502–517MathSciNetCrossRefMATH
Zurück zum Zitat Jung D, Gea HC (2004) Topology optimization of nonlinear structures. Finite Elem Anal Des 40(11):1417–1427CrossRef Jung D, Gea HC (2004) Topology optimization of nonlinear structures. Finite Elem Anal Des 40(11):1417–1427CrossRef
Zurück zum Zitat Kawamoto A (2009) Stabilization of geometrically nonlinear topology optimization by the Levenberg-marquardt method. Struct Multidiscip Optim 37(4):429–433MathSciNetCrossRef Kawamoto A (2009) Stabilization of geometrically nonlinear topology optimization by the Levenberg-marquardt method. Struct Multidiscip Optim 37(4):429–433MathSciNetCrossRef
Zurück zum Zitat Kemmler R, Lipka A, Ramm E (2005) Large deformations and stability in topology optimization. Struct Multidiscip Optim 30(6):459–476MathSciNetCrossRefMATH Kemmler R, Lipka A, Ramm E (2005) Large deformations and stability in topology optimization. Struct Multidiscip Optim 30(6):459–476MathSciNetCrossRefMATH
Zurück zum Zitat Kwak J, Cho S (2005) Topological shape optimization of geometrically nonlinear structures using level set method. Comput Struct 83(27):2257–2268MathSciNetCrossRef Kwak J, Cho S (2005) Topological shape optimization of geometrically nonlinear structures using level set method. Comput Struct 83(27):2257–2268MathSciNetCrossRef
Zurück zum Zitat Lahuerta RD, Simões ET, Campello EMB, Pimenta PM, Silva ECN (2013) Towards the stabilization of the low density elements in topology optimization with large deformation. Comput Mech 52(4):779–797MathSciNetCrossRefMATH Lahuerta RD, Simões ET, Campello EMB, Pimenta PM, Silva ECN (2013) Towards the stabilization of the low density elements in topology optimization with large deformation. Comput Mech 52(4):779–797MathSciNetCrossRefMATH
Zurück zum Zitat Lamberti L, Pappalettere C (2000) Comparison of the numerical efficiency of different sequential linear programming based algorithms for structural optimisation problems. Comput Struct 76(6):713–728CrossRef Lamberti L, Pappalettere C (2000) Comparison of the numerical efficiency of different sequential linear programming based algorithms for structural optimisation problems. Comput Struct 76(6):713–728CrossRef
Zurück zum Zitat Lamberti L, Pappalettere C (2003) Move limits definition in structural optimization with sequential linear programming. Part I: optimization algorithm. Comput Struct 81(4):197–213MathSciNetCrossRef Lamberti L, Pappalettere C (2003) Move limits definition in structural optimization with sequential linear programming. Part I: optimization algorithm. Comput Struct 81(4):197–213MathSciNetCrossRef
Zurück zum Zitat Lindgaard E, Dahl J (2013) On compliance and buckling objective functions in topology optimization of snap-through problems. Struct Multidiscip Optim 47(3):409–421MathSciNetCrossRefMATH Lindgaard E, Dahl J (2013) On compliance and buckling objective functions in topology optimization of snap-through problems. Struct Multidiscip Optim 47(3):409–421MathSciNetCrossRefMATH
Zurück zum Zitat Luo Q, Tong L (2015) Structural topology optimization for maximum linear buckling loads by using moving iso-surface threshold method. Struct Multidiscip Optim 52(1):71–90 Luo Q, Tong L (2015) Structural topology optimization for maximum linear buckling loads by using moving iso-surface threshold method. Struct Multidiscip Optim 52(1):71–90
Zurück zum Zitat Maute K, Schwarz S, Ramm E (1998) Adaptive topology optimization of elastoplastic structures. Struct Optim 15(2):81–91CrossRef Maute K, Schwarz S, Ramm E (1998) Adaptive topology optimization of elastoplastic structures. Struct Optim 15(2):81–91CrossRef
Zurück zum Zitat Moon SJ, Yoon GH (2013) A newly developed qp-relaxation method for element connectivity parameterization to achieve stress-based topology optimization for geometrically nonlinear structures. Comput Methods Appl Mech Eng 265:226–241MathSciNetCrossRefMATH Moon SJ, Yoon GH (2013) A newly developed qp-relaxation method for element connectivity parameterization to achieve stress-based topology optimization for geometrically nonlinear structures. Comput Methods Appl Mech Eng 265:226–241MathSciNetCrossRefMATH
Zurück zum Zitat MSC.Software (2011) MD Nastran 2011 & MSC Nastran 2011 dynamic analysis user’s guide. MSC.Software Corporation, Santa Ana MSC.Software (2011) MD Nastran 2011 & MSC Nastran 2011 dynamic analysis user’s guide. MSC.Software Corporation, Santa Ana
Zurück zum Zitat Nakshatrala PB, Tortorelli DA, Nakshatrala KB (2013) Nonlinear structural design using multiscale topology optimization. Part I: Static formulation. Comput Methods Appl Mech Eng 261:167–176MathSciNetCrossRefMATH Nakshatrala PB, Tortorelli DA, Nakshatrala KB (2013) Nonlinear structural design using multiscale topology optimization. Part I: Static formulation. Comput Methods Appl Mech Eng 261:167–176MathSciNetCrossRefMATH
Zurück zum Zitat Pimenta PM, Campello EMB, Wriggers P (2004) A fully nonlinear multi-parameter shell model with thickness variation and a triangular shell finite element. Comput Mech 34(3):181–193CrossRefMATH Pimenta PM, Campello EMB, Wriggers P (2004) A fully nonlinear multi-parameter shell model with thickness variation and a triangular shell finite element. Comput Mech 34(3):181–193CrossRefMATH
Zurück zum Zitat Rahmatalla SF, Swan CC (2004) A Q4/Q4 continuum structural topology optimization implementation. Struct Multidiscip Optim 27(1–2):130–135CrossRef Rahmatalla SF, Swan CC (2004) A Q4/Q4 continuum structural topology optimization implementation. Struct Multidiscip Optim 27(1–2):130–135CrossRef
Zurück zum Zitat Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Multidiscip Optim 16(1):68–75CrossRef Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Multidiscip Optim 16(1):68–75CrossRef
Zurück zum Zitat Stegmann J, Lund E (2005) Nonlinear topology optimization of layered shell structures. Struct Multidiscip Optim 29(5):349–360CrossRefMATH Stegmann J, Lund E (2005) Nonlinear topology optimization of layered shell structures. Struct Multidiscip Optim 29(5):349–360CrossRefMATH
Zurück zum Zitat Swan CC, Kosaka I (1997) Voigt-Reuss topology optimization for structures with nonlinear material behaviors. Int J Numer Methods Eng 40(20):3785–3814MathSciNetCrossRefMATH Swan CC, Kosaka I (1997) Voigt-Reuss topology optimization for structures with nonlinear material behaviors. Int J Numer Methods Eng 40(20):3785–3814MathSciNetCrossRefMATH
Zurück zum Zitat Tong LY, Lin JZ (2011) Structural topology optimization with implicit design variable-optimality and algorithm. Finite Elem Anal Des 47(8):922–932CrossRef Tong LY, Lin JZ (2011) Structural topology optimization with implicit design variable-optimality and algorithm. Finite Elem Anal Des 47(8):922–932CrossRef
Zurück zum Zitat Vasista S, Tong LY (2012) Design and testing of pressurized cellular planar morphing structures. AIAA J 50(6):1328–1338CrossRef Vasista S, Tong LY (2012) Design and testing of pressurized cellular planar morphing structures. AIAA J 50(6):1328–1338CrossRef
Zurück zum Zitat Wang F, Lazarov BS, Sigmund O, Jensen JS (2014) Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems. Comput Methods Appl Mech Eng 276:453–472MathSciNetCrossRef Wang F, Lazarov BS, Sigmund O, Jensen JS (2014) Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems. Comput Methods Appl Mech Eng 276:453–472MathSciNetCrossRef
Zurück zum Zitat Wilkinson JH (1965) The algebraic eigenvalue problem. Clarendon Press, OxfordMATH Wilkinson JH (1965) The algebraic eigenvalue problem. Clarendon Press, OxfordMATH
Zurück zum Zitat Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density filter based on heaviside functions. Struct Multidiscip Optim 41(4):495–505MathSciNetCrossRefMATH Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density filter based on heaviside functions. Struct Multidiscip Optim 41(4):495–505MathSciNetCrossRefMATH
Zurück zum Zitat Yoon GH, Kim YY (2005) Element connectivity parameterization for topology optimization of geometrically nonlinear structures. Int J Solids Struct 42(7):1983–2009MathSciNetCrossRefMATH Yoon GH, Kim YY (2005) Element connectivity parameterization for topology optimization of geometrically nonlinear structures. Int J Solids Struct 42(7):1983–2009MathSciNetCrossRefMATH
Zurück zum Zitat Yoon GH, Kim YY (2007) Topology optimization of material-nonlinear continuum structures by the element connectivity parameterization. Int J Numer Methods Eng 69(10):2196–2218MathSciNetCrossRefMATH Yoon GH, Kim YY (2007) Topology optimization of material-nonlinear continuum structures by the element connectivity parameterization. Int J Numer Methods Eng 69(10):2196–2218MathSciNetCrossRefMATH
Metadaten
Titel
An algorithm for eradicating the effects of void elements on structural topology optimization for nonlinear compliance
verfasst von
Quantian Luo
Liyong Tong
Publikationsdatum
05.11.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 4/2016
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-015-1325-x

Weitere Artikel der Ausgabe 4/2016

Structural and Multidisciplinary Optimization 4/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.