Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 4/2017

08.07.2017 | RESEARCH PAPER

Topology optimization of continuum structures subjected to the variance constraint of reaction forces

verfasst von: Tong Gao, Libin Qiu, Weihong Zhang

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the attainment of uniform reaction forces at the specific fixed boundary is investigated for topology optimization of continuum structures. The variance of the reaction forces at the boundary between the elastic solid and its foundation is firstly introduced as the evaluation criterion of the uniformity of the reaction forces. Then, the standard formulation of optimal topology design is improved by introducing the variance constraint of the reaction forces. Sensitivity analysis of the latter is carried out based on the adjoint method. Numerical examples are dealt with to reveal the effect of the variance constraint in comparison with solutions of standard topology optimization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Multidisc Optim 1:193–202CrossRef Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Multidisc Optim 1:193–202CrossRef
Zurück zum Zitat Buhl T (2002) Simultaneous topology optimization of structure and supports. Struct Multidisc Optim 23:336–346CrossRef Buhl T (2002) Simultaneous topology optimization of structure and supports. Struct Multidisc Optim 23:336–346CrossRef
Zurück zum Zitat Chang B, Shi Y, Dong S (1999) Comparative studies on stresses in weld-bonded, spot-welded and adhesive-bonded joints. J Mater Process Technol 87:230–236CrossRef Chang B, Shi Y, Dong S (1999) Comparative studies on stresses in weld-bonded, spot-welded and adhesive-bonded joints. J Mater Process Technol 87:230–236CrossRef
Zurück zum Zitat Cheng GD, Guo X (1997) ε-relaxed approach in structural topology optimization. Struct Optim 13:258–266CrossRef Cheng GD, Guo X (1997) ε-relaxed approach in structural topology optimization. Struct Optim 13:258–266CrossRef
Zurück zum Zitat Díaz AR, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Methods Eng 35:1487–1502MathSciNetCrossRefMATH Díaz AR, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Methods Eng 35:1487–1502MathSciNetCrossRefMATH
Zurück zum Zitat Deaton J, Grandhi R (2013) Stiffening of restrained thermal structures via topology optimization. Struct Multidisc Optim 48:731–745CrossRef Deaton J, Grandhi R (2013) Stiffening of restrained thermal structures via topology optimization. Struct Multidisc Optim 48:731–745CrossRef
Zurück zum Zitat Deaton J, Grandhi R (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidisc Optim 49:1–38MathSciNetCrossRef Deaton J, Grandhi R (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidisc Optim 49:1–38MathSciNetCrossRef
Zurück zum Zitat Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43:1453–1478MathSciNetCrossRefMATH Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43:1453–1478MathSciNetCrossRefMATH
Zurück zum Zitat Fleury C, Braibant V (1986) Structural optimization: A new dual method using mixed variables. Int J Numer Methods Eng 23:409–428MathSciNetCrossRefMATH Fleury C, Braibant V (1986) Structural optimization: A new dual method using mixed variables. Int J Numer Methods Eng 23:409–428MathSciNetCrossRefMATH
Zurück zum Zitat Gao T, Zhang WH (2011) A mass constraint formulation for structural topology optimization with multiphase materials. Int J Numer Methods Eng 88:774–796 Gao T, Zhang WH (2011) A mass constraint formulation for structural topology optimization with multiphase materials. Int J Numer Methods Eng 88:774–796
Zurück zum Zitat Hilding D (2000) A heuristic smoothing procedure for avoiding local optima in optimization of structures subject to unilateral constraints. Struct Multidisc Optim 20:29–36CrossRef Hilding D (2000) A heuristic smoothing procedure for avoiding local optima in optimization of structures subject to unilateral constraints. Struct Multidisc Optim 20:29–36CrossRef
Zurück zum Zitat Jog CS (2002) Topology design of structures subjected to periodic loading. J Sound Vib 253:687–709CrossRef Jog CS (2002) Topology design of structures subjected to periodic loading. J Sound Vib 253:687–709CrossRef
Zurück zum Zitat Kočvara M (1997) Topology optimization with displacement constraints: a bilevel programming approach. Struct Optim 14:256–263CrossRef Kočvara M (1997) Topology optimization with displacement constraints: a bilevel programming approach. Struct Optim 14:256–263CrossRef
Zurück zum Zitat Kono D, Nishio S, Yamaji I, Matsubara A (2015) A method for stiffness tuning of machine tool supports considering contact stiffness. Int J Mach Tool Manu 90:50–59CrossRef Kono D, Nishio S, Yamaji I, Matsubara A (2015) A method for stiffness tuning of machine tool supports considering contact stiffness. Int J Mach Tool Manu 90:50–59CrossRef
Zurück zum Zitat Liu H, Wu J, Wang Y (2015a) Impact of anchor bolts creep relaxation on geometric accuracy decline of large computer numerical control machine tools. J Xi'an Jiaotong Univ 49:14–17 Liu H, Wu J, Wang Y (2015a) Impact of anchor bolts creep relaxation on geometric accuracy decline of large computer numerical control machine tools. J Xi'an Jiaotong Univ 49:14–17
Zurück zum Zitat Liu H, Zhang WH, Gao T (2015b) A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations. Struct Multidisc Optim:1–13 Liu H, Zhang WH, Gao T (2015b) A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations. Struct Multidisc Optim:1–13
Zurück zum Zitat Neves MM, Rodrigues H, Guedes JM (1995) Generalized topology design of structures with a buckling load criterion. Struct Multidisc Optim 10:71–78CrossRef Neves MM, Rodrigues H, Guedes JM (1995) Generalized topology design of structures with a buckling load criterion. Struct Multidisc Optim 10:71–78CrossRef
Zurück zum Zitat Pedersen P, Pedersen N (2012) Interpolation/penalization applied for strength design of 3D thermoelastic structures. Struct Multidisc Optim 1–14 Pedersen P, Pedersen N (2012) Interpolation/penalization applied for strength design of 3D thermoelastic structures. Struct Multidisc Optim 1–14
Zurück zum Zitat Rodrigues H, Fernandes P (1995) A material based model for topology optimization of thermoelastic structures. Int J Numer Methods Eng 38:1951–1965MathSciNetCrossRefMATH Rodrigues H, Fernandes P (1995) A material based model for topology optimization of thermoelastic structures. Int J Numer Methods Eng 38:1951–1965MathSciNetCrossRefMATH
Zurück zum Zitat Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidisc Optim 21:120–127CrossRef Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidisc Optim 21:120–127CrossRef
Zurück zum Zitat Sigmund O, Maute K (2013) Topology optimization approaches: A comparative review. Struct Multidisc Optim 48:1031–1055CrossRef Sigmund O, Maute K (2013) Topology optimization approaches: A comparative review. Struct Multidisc Optim 48:1031–1055CrossRef
Zurück zum Zitat Takezawa A, Nishiwaki S, Izui K (2006) Structural optimization based on topology optimization techniques using frame elements considering cross-sectional properties. Struct Multidisc Optim 34:41–60CrossRef Takezawa A, Nishiwaki S, Izui K (2006) Structural optimization based on topology optimization techniques using frame elements considering cross-sectional properties. Struct Multidisc Optim 34:41–60CrossRef
Zurück zum Zitat Zhang J, Wang B, Niu F, Cheng G (2015a) Design optimization of connection section for concentrated force diffusion. Mech Based Des Struct Mach 43:209–231CrossRef Zhang J, Wang B, Niu F, Cheng G (2015a) Design optimization of connection section for concentrated force diffusion. Mech Based Des Struct Mach 43:209–231CrossRef
Zurück zum Zitat Zhang WH, Yang JG, Xu YJ, Gao T (2014) Topology optimization of thermoelastic structures: mean compliance minimization or elastic strain energy minimization. Struct Multidisc Optim 49:417–429 Zhang WH, Yang JG, Xu YJ, Gao T (2014) Topology optimization of thermoelastic structures: mean compliance minimization or elastic strain energy minimization. Struct Multidisc Optim 49:417–429
Zurück zum Zitat Zhang WH, Liu H, Gao T (2015b) Topology optimization of large-scale structures subjected to stationary random excitation: An efficient optimization procedure integrating pseudo excitation method and mode acceleration method. Comput Struct 158:61–70CrossRef Zhang WH, Liu H, Gao T (2015b) Topology optimization of large-scale structures subjected to stationary random excitation: An efficient optimization procedure integrating pseudo excitation method and mode acceleration method. Comput Struct 158:61–70CrossRef
Zurück zum Zitat Zhu JH, Zhang WH, Beckers P (2009) Integrated layout design of multi-component system. Int J Numer Methods Eng 78:631–651 Zhu JH, Zhang WH, Beckers P (2009) Integrated layout design of multi-component system. Int J Numer Methods Eng 78:631–651
Zurück zum Zitat Zhu JH, Zhang WH, Xia L (2015) Topology optimization in aircraft and aerospace structures design. Arch Comput Method E:1–28 Zhu JH, Zhang WH, Xia L (2015) Topology optimization in aircraft and aerospace structures design. Arch Comput Method E:1–28
Zurück zum Zitat Zhu JH, Li Y, Zhang WH, Hou J (2016) Shape preserving design with structural topology optimization. Struct Multidisc Optim 53:893–906MathSciNetCrossRef Zhu JH, Li Y, Zhang WH, Hou J (2016) Shape preserving design with structural topology optimization. Struct Multidisc Optim 53:893–906MathSciNetCrossRef
Metadaten
Titel
Topology optimization of continuum structures subjected to the variance constraint of reaction forces
verfasst von
Tong Gao
Libin Qiu
Weihong Zhang
Publikationsdatum
08.07.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 4/2017
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-017-1742-0

Weitere Artikel der Ausgabe 4/2017

Structural and Multidisciplinary Optimization 4/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.