Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 5-6/2020

04.06.2020 | ORIGINAL ARTICLE

Experimental investigation on influence of engagement angle and tool geometry on plunge milling

verfasst von: Nuodi Huang, Eugen Krebs, Jonas Baumann, Yuansheng Zhou, Shijing Wu, Dirk Biermann

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 5-6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Taking advantage of the superior cutter axial stiffness, plunge milling provides a higher material removal rate in rough milling for components with deep cavities. Tool wear depending on cutting parameters of radial cutting width, axial cutting depth, step interval, feedrate, and spindle speed has been studied by several researchers. For a more comprehensive understanding of the wear mechanism, this study investigates the influences of tool engagement angle and tool geometry on tool wear based on multiple sets of machining tests. The development of tool wear during plunge milling is monitored. Results show that tool wear of insert with large engagement angle mainly exists on minor edge, which is caused by increased tool deflection. When the radial distance equals to tool radius, optimal engagement angle can be achieved while considering both tool life and machining efficiency. The experimental results show that tool life of insert with rake angle of 22° is 6.5% higher than rake angle of 15°. Smaller corner radius has positive influences on tool life improvement. Surprisingly, tool life of insert without cutting edge chamfer is 3.6 times than insert with cutting edge chamfer. The best tool geometric parameters of plunge insert can then be identified among a variety of inserts. This work is useful for cutting tool producers and manufacturers to optimize tool geometry and machining parameters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cafieri S, Monies F, Mongeau M, Bes C (2016) Plunge milling time optimization via mixed-integer nonlinear programming[J]. Comput Ind Eng 98:434–445CrossRef Cafieri S, Monies F, Mongeau M, Bes C (2016) Plunge milling time optimization via mixed-integer nonlinear programming[J]. Comput Ind Eng 98:434–445CrossRef
2.
Zurück zum Zitat Rauch M, Hascoet JY (2012) Selecting a milling strategy with regard to the machine tool capabilities: application to plunge milling[J]. Int J Adv Manuf Technol 59(1-4):47–54CrossRef Rauch M, Hascoet JY (2012) Selecting a milling strategy with regard to the machine tool capabilities: application to plunge milling[J]. Int J Adv Manuf Technol 59(1-4):47–54CrossRef
3.
Zurück zum Zitat Zhuang K, Zhang X, Zhang D, Ding H (2013) On cutting parameters selection for plunge milling of heat-resistant-super-alloys based on precise cutting geometry[J]. J Mater Process Technol 213(8):1378–1386CrossRef Zhuang K, Zhang X, Zhang D, Ding H (2013) On cutting parameters selection for plunge milling of heat-resistant-super-alloys based on precise cutting geometry[J]. J Mater Process Technol 213(8):1378–1386CrossRef
4.
Zurück zum Zitat Wakaoka S, Yamane Y, Sekiya K, Narutaki N (2002) High-speed and high-accuracy plunge cutting for vertical walls[J]. J Mater Process Technol 127(2):246–250CrossRef Wakaoka S, Yamane Y, Sekiya K, Narutaki N (2002) High-speed and high-accuracy plunge cutting for vertical walls[J]. J Mater Process Technol 127(2):246–250CrossRef
5.
Zurück zum Zitat Han FY, Zhang DH, Luo M, Wu BH (2014) Optimal CNC plunge cutter selection and tool path generation for multi-axis roughing free-form surface impeller channel[J]. Int J Adv Manuf Technol 71(9-12):1801–1810CrossRef Han FY, Zhang DH, Luo M, Wu BH (2014) Optimal CNC plunge cutter selection and tool path generation for multi-axis roughing free-form surface impeller channel[J]. Int J Adv Manuf Technol 71(9-12):1801–1810CrossRef
6.
Zurück zum Zitat Sun C, Wang YH, Huang ND (2015) A new plunge milling tool path generation method for radial depth control using medial axis transform[J]. Int J Adv Manuf Technol 76(9-12):1575–1582CrossRef Sun C, Wang YH, Huang ND (2015) A new plunge milling tool path generation method for radial depth control using medial axis transform[J]. Int J Adv Manuf Technol 76(9-12):1575–1582CrossRef
7.
Zurück zum Zitat Shi Y, Zheng G (2017) The algorithm of layering calculation for corner plunge milling tool path[J]. Int J Adv Manuf Technol 91(5-8):2059–2075CrossRef Shi Y, Zheng G (2017) The algorithm of layering calculation for corner plunge milling tool path[J]. Int J Adv Manuf Technol 91(5-8):2059–2075CrossRef
8.
Zurück zum Zitat Huang N, Jin Y, Lu Y, Li X, Wu S (2019) Plunge milling with constant scallop height by adaptively modifying the step interval for pocket wall[J]. Int J Adv Manuf Technol 101(1-4):203–208CrossRef Huang N, Jin Y, Lu Y, Li X, Wu S (2019) Plunge milling with constant scallop height by adaptively modifying the step interval for pocket wall[J]. Int J Adv Manuf Technol 101(1-4):203–208CrossRef
9.
Zurück zum Zitat Liang Y, Zhang D, Chen ZC, Ren J, Li X (2014) Tool orientation optimization and location determination for four-axis plunge milling of open blisks[J]. Int J Adv Manuf Technol 70(9-12):2249–2261CrossRef Liang Y, Zhang D, Chen ZC, Ren J, Li X (2014) Tool orientation optimization and location determination for four-axis plunge milling of open blisks[J]. Int J Adv Manuf Technol 70(9-12):2249–2261CrossRef
10.
Zurück zum Zitat Yang X, Tang J (2014) Research on manufacturing method of CNC plunge milling for spur face-gear[J]. J Mater Process Technol 214(12):3013–3019CrossRef Yang X, Tang J (2014) Research on manufacturing method of CNC plunge milling for spur face-gear[J]. J Mater Process Technol 214(12):3013–3019CrossRef
11.
Zurück zum Zitat Sun C, Bi Q, Wang Y, Huang N (2015) Improving cutter life and cutting efficiency of five-axis plunge milling by simulation and tool path regeneration[J]. Int J Adv Manuf Technol 77(5-8):965–972CrossRef Sun C, Bi Q, Wang Y, Huang N (2015) Improving cutter life and cutting efficiency of five-axis plunge milling by simulation and tool path regeneration[J]. Int J Adv Manuf Technol 77(5-8):965–972CrossRef
12.
Zurück zum Zitat Liang Y, Ren J, Zhang D, Li X, Zhou J (2015) Mechanics-based feedrate scheduling for multi-axis plunge milling[J]. Int J Adv Manuf Technol 79(1-4):123–133CrossRef Liang Y, Ren J, Zhang D, Li X, Zhou J (2015) Mechanics-based feedrate scheduling for multi-axis plunge milling[J]. Int J Adv Manuf Technol 79(1-4):123–133CrossRef
13.
Zurück zum Zitat Liang Y, Zhang D, Ren J, Xu Y (2015) Feedrate scheduling for multi-axis plunge milling of open blisks[J]. Proc Inst Mech Eng B J Eng Manuf 229(9):1525–1534CrossRef Liang Y, Zhang D, Ren J, Xu Y (2015) Feedrate scheduling for multi-axis plunge milling of open blisks[J]. Proc Inst Mech Eng B J Eng Manuf 229(9):1525–1534CrossRef
14.
Zurück zum Zitat Sun T, Fu Y, He L, Chen XM, Zhang WG, Chen W, Su XB (2016) Machinability of plunge milling for damage-tolerant titanium alloy TC21[J]. Int J Adv Manuf Technol 85(5-8):1315–1323CrossRef Sun T, Fu Y, He L, Chen XM, Zhang WG, Chen W, Su XB (2016) Machinability of plunge milling for damage-tolerant titanium alloy TC21[J]. Int J Adv Manuf Technol 85(5-8):1315–1323CrossRef
15.
Zurück zum Zitat Altintas Y, Ko JH (2006) Chatter stability of plunge milling[J]. CIRP Ann 55(1):361–364CrossRef Altintas Y, Ko JH (2006) Chatter stability of plunge milling[J]. CIRP Ann 55(1):361–364CrossRef
16.
Zurück zum Zitat Ko JH, Altintas Y (2007) Time domain model of plunge milling operation[J]. Int J Mach Tools Manuf 47(9):1351–1361CrossRef Ko JH, Altintas Y (2007) Time domain model of plunge milling operation[J]. Int J Mach Tools Manuf 47(9):1351–1361CrossRef
17.
Zurück zum Zitat Ko JH, Altintas Y (2007) Dynamics and stability of plunge milling operations[J]. J Manuf Sci Eng 129(1):32–40CrossRef Ko JH, Altintas Y (2007) Dynamics and stability of plunge milling operations[J]. J Manuf Sci Eng 129(1):32–40CrossRef
18.
Zurück zum Zitat Damir A, Ng EG, Elbestawi M (2011) Force prediction and stability analysis of plunge milling of systems with rigid and flexible workpiece[J]. Int J Adv Manuf Technol 54(9-12):853–877CrossRef Damir A, Ng EG, Elbestawi M (2011) Force prediction and stability analysis of plunge milling of systems with rigid and flexible workpiece[J]. Int J Adv Manuf Technol 54(9-12):853–877CrossRef
19.
Zurück zum Zitat Danis I, Monies F, Lagarrigue P, Wojtowicz N (2016) Cutting forces and their modelling in plunge milling of magnesium-rare earth alloys[J]. Int J Adv Manuf Technol 84(9-12):1801–1820CrossRef Danis I, Monies F, Lagarrigue P, Wojtowicz N (2016) Cutting forces and their modelling in plunge milling of magnesium-rare earth alloys[J]. Int J Adv Manuf Technol 84(9-12):1801–1820CrossRef
20.
Zurück zum Zitat Zhai Y, Gao H, Wang Y, Li R (2019) Influence of cutting parameters on force coefficients and stability in plunge milling[J]. Int J Adv Manuf Technol:1–11 Zhai Y, Gao H, Wang Y, Li R (2019) Influence of cutting parameters on force coefficients and stability in plunge milling[J]. Int J Adv Manuf Technol:1–11
21.
Zurück zum Zitat Ibaraki S, Yamaji I, Matsubara A (2010) On the removal of critical cutting regions by trochoidal grooving[J]. Precis Eng 34(3):467–473CrossRef Ibaraki S, Yamaji I, Matsubara A (2010) On the removal of critical cutting regions by trochoidal grooving[J]. Precis Eng 34(3):467–473CrossRef
22.
Zurück zum Zitat Deng Q, Mo R, Chen ZC, Chang Z (2018) A new approach to generating trochoidal tool paths for effective corner machining[J]. Int J Adv Manuf Technol 95(5-8):3001–3012CrossRef Deng Q, Mo R, Chen ZC, Chang Z (2018) A new approach to generating trochoidal tool paths for effective corner machining[J]. Int J Adv Manuf Technol 95(5-8):3001–3012CrossRef
23.
Zurück zum Zitat Huang N, Krebs E, Baumann J, Wirtz A, Jaeger EM, Biermann D (2020) A universal pocket plunge milling method to decrease the maximum engagement angle [J]. J Manuf Sci Eng 142(8):081005 Huang N, Krebs E, Baumann J, Wirtz A, Jaeger EM, Biermann D (2020) A universal pocket plunge milling method to decrease the maximum engagement angle [J]. J Manuf Sci Eng 142(8):081005
24.
Zurück zum Zitat ISO 8688-2: 1989. Tool life testing in milling, part 2: end milling[J]. ISO 8688-2: 1989. Tool life testing in milling, part 2: end milling[J].
Metadaten
Titel
Experimental investigation on influence of engagement angle and tool geometry on plunge milling
verfasst von
Nuodi Huang
Eugen Krebs
Jonas Baumann
Yuansheng Zhou
Shijing Wu
Dirk Biermann
Publikationsdatum
04.06.2020
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 5-6/2020
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-05480-x

Weitere Artikel der Ausgabe 5-6/2020

The International Journal of Advanced Manufacturing Technology 5-6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.