Skip to main content
Erschienen in: Wood Science and Technology 3/2015

01.05.2015 | Original

Thermal conductivity of wood at angles to the principal anatomical directions

verfasst von: Oliver Vay, Karin De Borst, Christian Hansmann, Alfred Teischinger, Ulrich Müller

Erschienen in: Wood Science and Technology | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For an orthotropic material, the thermal conductivity in arbitrary directions follows from the conductivities in the principal material directions by rotation of the thermal conductivity tensor. Thus, in case of orthotropy, three analytical relations describe the thermal conductivity of wood between the principal anatomical directions depending on the rotation angle. Experiments were made to prove if these functions hold for wood. Thermal conductivity measurements were performed in the principal anatomical directions of European oak (Quercus sp.), European beech (Fagus sylvatica) and Norway spruce (Picea abies) and at angles to the grain in the longitudinal–radial plane. Test instrument was a single-specimen guarded hot plate apparatus. Experimental data for thermal conductivity at angles to the grain were compared with values predicted from the conductivities in the principal anatomical directions using the relations for rotation of the thermal conductivity tensor. Excellent agreement between the experimental data and the theoretical curve in the longitudinal–radial plane was obtained. It is concluded that thermal conductivity of wood at angles to the principal anatomical directions can be described by transformation equations derived by the respective rotation of the thermal conductivity tensor. This shows that wood exhibits orthotropic symmetry of the thermal conduction behaviour.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bučar B, Straže A (2008) Determination of the thermal conductivity of wood by the hot plate method: the influence of morphological properties of fir wood (Abies alba Mill.) to the contact thermal resistance. Holzforschung 62:362–367 Bučar B, Straže A (2008) Determination of the thermal conductivity of wood by the hot plate method: the influence of morphological properties of fir wood (Abies alba Mill.) to the contact thermal resistance. Holzforschung 62:362–367
Zurück zum Zitat Donaldson L (2008) Microfibril angle: measurement, variation and relationships—a review. IAWA J 29(4):345–386CrossRef Donaldson L (2008) Microfibril angle: measurement, variation and relationships—a review. IAWA J 29(4):345–386CrossRef
Zurück zum Zitat Eitelberger J, Hofstetter K (2011) Prediction of transport properties of wood below the fiber saturation point—a multiscale homogenization approach and its experimental validation part 1: thermal conductivity. Compos Sci Technol 71:134–144CrossRef Eitelberger J, Hofstetter K (2011) Prediction of transport properties of wood below the fiber saturation point—a multiscale homogenization approach and its experimental validation part 1: thermal conductivity. Compos Sci Technol 71:134–144CrossRef
Zurück zum Zitat Frandsen HL (2005) Modeling of moisture transport in wood: state of the art and analytic discussion. Wood science and timber engineering, paper no. 1, 2nd edn. Department of Building Technology and Structural Engineering, Aalborg University, Denmark Frandsen HL (2005) Modeling of moisture transport in wood: state of the art and analytic discussion. Wood science and timber engineering, paper no. 1, 2nd edn. Department of Building Technology and Structural Engineering, Aalborg University, Denmark
Zurück zum Zitat Griffiths E, Kaye G (1923) The measurement of thermal conductivity. Proc Roy Soc Lond Ser A 104(724):71–98CrossRef Griffiths E, Kaye G (1923) The measurement of thermal conductivity. Proc Roy Soc Lond Ser A 104(724):71–98CrossRef
Zurück zum Zitat ISO 8302 (1991) Thermal insulation—determination of steady-state thermal resistance and related properties—guarded hot plate apparatus ISO 8302 (1991) Thermal insulation—determination of steady-state thermal resistance and related properties—guarded hot plate apparatus
Zurück zum Zitat Kollmann FFP, Côté WA (1968) Principles of wood science and technology. 1. Solid wood. Springer, BerlinCrossRef Kollmann FFP, Côté WA (1968) Principles of wood science and technology. 1. Solid wood. Springer, BerlinCrossRef
Zurück zum Zitat Kühlmann G (1962) Investigation of the thermal properties of wood and particleboards in dependency from moisture content and temperature in the hygroscopic range (In German). Holz Roh Werkst 20(7):259–270CrossRef Kühlmann G (1962) Investigation of the thermal properties of wood and particleboards in dependency from moisture content and temperature in the hygroscopic range (In German). Holz Roh Werkst 20(7):259–270CrossRef
Zurück zum Zitat Lichtenegger H, Reiterer A, Stanzl-Tschegg SE, Fratzl P (1999) Variation of cellulose microfibril angles in softwoods and hardwoods—a possible strategy of mechanical optimization. J Struct Biol 128:257–269CrossRefPubMed Lichtenegger H, Reiterer A, Stanzl-Tschegg SE, Fratzl P (1999) Variation of cellulose microfibril angles in softwoods and hardwoods—a possible strategy of mechanical optimization. J Struct Biol 128:257–269CrossRefPubMed
Zurück zum Zitat MacLean JD (1941) Thermal conductivity of wood. Heat Pip Air Cond 13:380–391 MacLean JD (1941) Thermal conductivity of wood. Heat Pip Air Cond 13:380–391
Zurück zum Zitat Maku T (1954) Studies on the heat conduction in wood. Bulletin of the wood research Institute, Kyoto University 13: 1–80 Maku T (1954) Studies on the heat conduction in wood. Bulletin of the wood research Institute, Kyoto University 13: 1–80
Zurück zum Zitat Narayanamurti D, Ranganathan V (1941) The thermal conductivity of Indian timbers. Proc Indian Acad Sci 13(4):300–315 Narayanamurti D, Ranganathan V (1941) The thermal conductivity of Indian timbers. Proc Indian Acad Sci 13(4):300–315
Zurück zum Zitat Ratcliffe E (1964a) A review of thermal conductivity data—1. Wood 29(7):49–51 Ratcliffe E (1964a) A review of thermal conductivity data—1. Wood 29(7):49–51
Zurück zum Zitat Ratcliffe E (1964b) A review of thermal conductivity data—2. Wood 29(8):46–49 Ratcliffe E (1964b) A review of thermal conductivity data—2. Wood 29(8):46–49
Zurück zum Zitat Ratcliffe E (1964c) A review of thermal conductivity data—3. Wood 29(9):50–54 Ratcliffe E (1964c) A review of thermal conductivity data—3. Wood 29(9):50–54
Zurück zum Zitat Rowley F (1933) The heat conductivity of wood at climatic temperature differences. Heat Pip Air Cond 5:313–323 Rowley F (1933) The heat conductivity of wood at climatic temperature differences. Heat Pip Air Cond 5:313–323
Zurück zum Zitat Schneider A, Engelhardt F (1977) Vergleichende Untersuchungen über die Wärmeleitfähigkeit von Holzspan- und Rindenplatten (Comparative investigations on the thermal conductivity of wood particle boards and bark boards) (In German). Holz Roh- Werkst 35(7):273–278CrossRef Schneider A, Engelhardt F (1977) Vergleichende Untersuchungen über die Wärmeleitfähigkeit von Holzspan- und Rindenplatten (Comparative investigations on the thermal conductivity of wood particle boards and bark boards) (In German). Holz Roh- Werkst 35(7):273–278CrossRef
Zurück zum Zitat Sonderegger W, Hering S, Niemz P (2011) Thermal behaviour of Norway spruce and European beech in and between the principal anatomical directions. Holzforschung 65:369–375 Sonderegger W, Hering S, Niemz P (2011) Thermal behaviour of Norway spruce and European beech in and between the principal anatomical directions. Holzforschung 65:369–375
Zurück zum Zitat Torgovnikov G, Vinden P (2009) High-intensity microwave wood modification for increasing permeability. Forest Prod J 59(4):84–92 Torgovnikov G, Vinden P (2009) High-intensity microwave wood modification for increasing permeability. Forest Prod J 59(4):84–92
Zurück zum Zitat Vay O, Obersriebnig M, Müller U, Konnerth J, Gindl-Altmutter W (2013) Studying thermal conductivity of wood at cell wall level by scanning thermal microscopy (SThM). Holzforschung 67(2):155–159CrossRef Vay O, Obersriebnig M, Müller U, Konnerth J, Gindl-Altmutter W (2013) Studying thermal conductivity of wood at cell wall level by scanning thermal microscopy (SThM). Holzforschung 67(2):155–159CrossRef
Zurück zum Zitat Wagenführ R (1996) Holzatlas. 4. Auflage, Fachbuchverlag Leipzig Wagenführ R (1996) Holzatlas. 4. Auflage, Fachbuchverlag Leipzig
Zurück zum Zitat Wangaard F (1940) Transverse heat conductivity of wood. Heat Pip Air Cond 12:459–464 Wangaard F (1940) Transverse heat conductivity of wood. Heat Pip Air Cond 12:459–464
Metadaten
Titel
Thermal conductivity of wood at angles to the principal anatomical directions
verfasst von
Oliver Vay
Karin De Borst
Christian Hansmann
Alfred Teischinger
Ulrich Müller
Publikationsdatum
01.05.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Wood Science and Technology / Ausgabe 3/2015
Print ISSN: 0043-7719
Elektronische ISSN: 1432-5225
DOI
https://doi.org/10.1007/s00226-015-0716-x

Weitere Artikel der Ausgabe 3/2015

Wood Science and Technology 3/2015 Zur Ausgabe