Skip to main content
Erschienen in: Wood Science and Technology 5/2017

21.06.2017 | Original

Application of artificial neural networks as a predictive method to differentiate the wood of Pinus sylvestris L. and Pinus nigra Arn subsp. salzmannii (Dunal) Franco

verfasst von: Luis G. Esteban, Paloma de Palacios, María Conde, Francisco G. Fernández, Alberto García-Iruela, Marta González-Alonso

Erschienen in: Wood Science and Technology | Ausgabe 5/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The wood structure of conifers in general and the Pinus genus in particular makes species differentiation by traditional qualitative or quantitative methods complicated or even impossible at times. Pinus sylvestris L. and Pinus nigra Arn subsp. salzmannii (Dunal) Franco are a clear example of this because they cannot be differentiated by traditional methods. However, correctly identifying these species is very important in some cases as they are extensively used in a large variety of fields because of their wide distribution range in the forests of Europe and Asia. Using trees selected from the same forest to minimise the influence of site and performing a biometric study of 10 growth rings from the same climate period, a feedforward multilayer perceptron network trained by the resilient backpropagation algorithm was designed to determine whether the network could be used to differentiate these species with a high degree of probability. The artificial neural network achieved 90.4% accuracy in the training set, 81.6% in the validation set and 81.2% in the testing set. This result justifies the use of this tool for wood identification at anatomical level.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Avramidis S, Iliadis L (2005a) Predicting wood thermal conductivity using artificial neural networks. Wood Fiber Sci 37:682–690 Avramidis S, Iliadis L (2005a) Predicting wood thermal conductivity using artificial neural networks. Wood Fiber Sci 37:682–690
Zurück zum Zitat Avramidis S, Iliadis L (2005b) Wood-water sorption isotherm prediction with artificial neural networks: a preliminary study. Holzforschung 59:336–341 Avramidis S, Iliadis L (2005b) Wood-water sorption isotherm prediction with artificial neural networks: a preliminary study. Holzforschung 59:336–341
Zurück zum Zitat Batista JW, Monteiro TC, Rauber VT, Alves JA, Ribeiro A (2011) The use of near infrared spectroscopy to identify solid wood specimens of Swietenia macrophylla (Cites Appendix II). IAWA J 32:285–296CrossRef Batista JW, Monteiro TC, Rauber VT, Alves JA, Ribeiro A (2011) The use of near infrared spectroscopy to identify solid wood specimens of Swietenia macrophylla (Cites Appendix II). IAWA J 32:285–296CrossRef
Zurück zum Zitat Burks TF, Shearer SA, Heath JR, Donohue KD (2005) Evaluation of neural network classifiers for weed species discrimination. Biosyst Eng 91:293–304CrossRef Burks TF, Shearer SA, Heath JR, Donohue KD (2005) Evaluation of neural network classifiers for weed species discrimination. Biosyst Eng 91:293–304CrossRef
Zurück zum Zitat Catalán G, Gil P, Galera RM, Martín S, Agúndez D, Alía R (1991) Las regiones de procedencia de Pinus sylvestris L. y Pinus nigra Arn. subsp. salzmannii (Dunal) Franco en España [The regions of provenance of Pinus sylvestris L. and Pinus nigra Arn. subsp. salzmannii (Dunal) Franco in Spain]. Instituto Nacional para la Conservación de la Naturaleza, Madrid Catalán G, Gil P, Galera RM, Martín S, Agúndez D, Alía R (1991) Las regiones de procedencia de Pinus sylvestris L. y Pinus nigra Arn. subsp. salzmannii (Dunal) Franco en España [The regions of provenance of Pinus sylvestris L. and Pinus nigra Arn. subsp. salzmannii (Dunal) Franco in Spain]. Instituto Nacional para la Conservación de la Naturaleza, Madrid
Zurück zum Zitat Clark JY (2003) Artificial neural networks for species identification by taxonomists. Biosystems 72:131–147CrossRefPubMed Clark JY (2003) Artificial neural networks for species identification by taxonomists. Biosystems 72:131–147CrossRefPubMed
Zurück zum Zitat Clark JY, Corney D, Tang HL (2012) Automated plant identification using artificial neural networks. In: Proceedings of the IEEE Symposium on computational intelligence in bioinformatics and computational biology (CIBCB), San Diego (CA) Clark JY, Corney D, Tang HL (2012) Automated plant identification using artificial neural networks. In: Proceedings of the IEEE Symposium on computational intelligence in bioinformatics and computational biology (CIBCB), San Diego (CA)
Zurück zum Zitat Cook DF, Whittaker AD (1992) Neural network models for prediction of process parameters in wood products manufacturing. In: Proceedings of the 1st industrial engineering research conference, Chicago (IL) Cook DF, Whittaker AD (1992) Neural network models for prediction of process parameters in wood products manufacturing. In: Proceedings of the 1st industrial engineering research conference, Chicago (IL)
Zurück zum Zitat Demuth H, Beale M, Hagan M (2002) Neural network toolbox for use with MATLAB. User’s Guide. The Math Works Inc., Natick (MA) Demuth H, Beale M, Hagan M (2002) Neural network toolbox for use with MATLAB. User’s Guide. The Math Works Inc., Natick (MA)
Zurück zum Zitat Diamantopoulou MJ (2005) Artificial neural networks as an alternative tool in pine bark volume estimation. Comput Electron Agric 48:235–244CrossRef Diamantopoulou MJ (2005) Artificial neural networks as an alternative tool in pine bark volume estimation. Comput Electron Agric 48:235–244CrossRef
Zurück zum Zitat Drake PR, Packianather MS (1998) A decision tree of neural networks for classifying images of wood veneer. Int J Adv Manuf Technol 14:280–285CrossRef Drake PR, Packianather MS (1998) A decision tree of neural networks for classifying images of wood veneer. Int J Adv Manuf Technol 14:280–285CrossRef
Zurück zum Zitat Esteban LG, Guindeo A (1988) Anatomía e identificación de maderas de coníferas españolas. [Anatomy and identification of Spanish conifer woods]. AITIM, Madrid Esteban LG, Guindeo A (1988) Anatomía e identificación de maderas de coníferas españolas. [Anatomy and identification of Spanish conifer woods]. AITIM, Madrid
Zurück zum Zitat Esteban LG, Fernández FG, de Palacios P, Conde M (2009a) Artificial neural networks in variable process control: application in particleboard manufacture. Inv Agrar-Sist Recur For 18:92–100 Esteban LG, Fernández FG, de Palacios P, Conde M (2009a) Artificial neural networks in variable process control: application in particleboard manufacture. Inv Agrar-Sist Recur For 18:92–100
Zurück zum Zitat Esteban LG, Fernández FG, de Palacios P, Romero RM, Cano NN (2009b) Artificial neural networks in wood identification: the case of two Juniperus species from the Canary Islands. IAWA J 30:87–94CrossRef Esteban LG, Fernández FG, de Palacios P, Romero RM, Cano NN (2009b) Artificial neural networks in wood identification: the case of two Juniperus species from the Canary Islands. IAWA J 30:87–94CrossRef
Zurück zum Zitat Esteban LG, de Palacios P, Fernández FG (2010) Use of artificial neural networks as a predictive method to determine moisture resistance of particle and fiber boards under cyclic testing conditions (UNE-EN 321). Wood Fib Sci 42:335–345 Esteban LG, de Palacios P, Fernández FG (2010) Use of artificial neural networks as a predictive method to determine moisture resistance of particle and fiber boards under cyclic testing conditions (UNE-EN 321). Wood Fib Sci 42:335–345
Zurück zum Zitat García Fernández F, Esteban LG, de Palacios P, Guindeo A, Navarro N (2008) Prediction of standard particleboard mechanical properties utilizing an artificial neural network and subsequent comparison with a multivariate regression model. Inv Agrar-Sist Recur For 17:178–187CrossRef García Fernández F, Esteban LG, de Palacios P, Guindeo A, Navarro N (2008) Prediction of standard particleboard mechanical properties utilizing an artificial neural network and subsequent comparison with a multivariate regression model. Inv Agrar-Sist Recur For 17:178–187CrossRef
Zurück zum Zitat Gasson P (2011) How precise can wood identification be? Wood anatomy’s role in support of the legal timber trade, especially CITES. IAWA J 32:137–154CrossRef Gasson P (2011) How precise can wood identification be? Wood anatomy’s role in support of the legal timber trade, especially CITES. IAWA J 32:137–154CrossRef
Zurück zum Zitat Gasson P, Miller R, Stekel DJ, Whinder F, Zieminska K (2010) Wood identification of Dalbergia nigra (CITES Appendix I) using quantitative wood anatomy, principal components analysis and naive Bayes classification. Ann Bot 105:45–56CrossRefPubMed Gasson P, Miller R, Stekel DJ, Whinder F, Zieminska K (2010) Wood identification of Dalbergia nigra (CITES Appendix I) using quantitative wood anatomy, principal components analysis and naive Bayes classification. Ann Bot 105:45–56CrossRefPubMed
Zurück zum Zitat Ghasembo N, Mobasheri MR, Reazey Y (2011) Vegetation species determination using spectral characteristics and artificial neural network (SCANN). J Agric Sci Technol 13:1223–1232 Ghasembo N, Mobasheri MR, Reazey Y (2011) Vegetation species determination using spectral characteristics and artificial neural network (SCANN). J Agric Sci Technol 13:1223–1232
Zurück zum Zitat Gong P, Pu RL, Yu B (1997) Conifer species recognition: an exploratory analysis of in situ hyperspectral data. Remote Sens Environ 62:189–200CrossRef Gong P, Pu RL, Yu B (1997) Conifer species recognition: an exploratory analysis of in situ hyperspectral data. Remote Sens Environ 62:189–200CrossRef
Zurück zum Zitat Granitto PM, Navone HD, Verdes PF, Ceccatto HA (2002) Weed seeds identification by machine vision. Comput Electron Agric 33:91–103CrossRef Granitto PM, Navone HD, Verdes PF, Ceccatto HA (2002) Weed seeds identification by machine vision. Comput Electron Agric 33:91–103CrossRef
Zurück zum Zitat Gu IYH, Andersson H, Vicen R (2009) Automatic classification of wood defects using support vector machines. In: Kulikowski JL, Wojciechowski K (eds) Computer vision and graphics. Proceedings of the international conference ICCVG 2008 (Lecture notes in computer science), vol 5337. Warsaw, pp 356–367 Gu IYH, Andersson H, Vicen R (2009) Automatic classification of wood defects using support vector machines. In: Kulikowski JL, Wojciechowski K (eds) Computer vision and graphics. Proceedings of the international conference ICCVG 2008 (Lecture notes in computer science), vol 5337. Warsaw, pp 356–367
Zurück zum Zitat Hagman POG, Grundberg SA (1995) Classification of scots pine (Pinus sylvestris) knots in density images from CT scaned logs. Holz Roh- Werkst 53:75–81CrossRef Hagman POG, Grundberg SA (1995) Classification of scots pine (Pinus sylvestris) knots in density images from CT scaned logs. Holz Roh- Werkst 53:75–81CrossRef
Zurück zum Zitat Hanssen F, Wischnewski N, Moreth U, Magel EA (2011) Molecular identification of Fitzroya cupressoides, Sequoia sempervirens, and Thuja plicata wood using taxon-specific RDNA-ITS primers. IAWA J 32:273–284CrossRef Hanssen F, Wischnewski N, Moreth U, Magel EA (2011) Molecular identification of Fitzroya cupressoides, Sequoia sempervirens, and Thuja plicata wood using taxon-specific RDNA-ITS primers. IAWA J 32:273–284CrossRef
Zurück zum Zitat Hermanson JC, Wiedenhoeft AC (2011) A brief review of machine vision in the context of automated wood identification systems. IAWA J 32:233–250CrossRef Hermanson JC, Wiedenhoeft AC (2011) A brief review of machine vision in the context of automated wood identification systems. IAWA J 32:233–250CrossRef
Zurück zum Zitat Hernández-Pérez JA, García-Alvarado MA, Trystram G, Heyd B (2004) Neural networks for the heat and mass transfer prediction during drying of cassava and mango. Innov Food Sci Emerg Technol 5:57–64CrossRef Hernández-Pérez JA, García-Alvarado MA, Trystram G, Heyd B (2004) Neural networks for the heat and mass transfer prediction during drying of cassava and mango. Innov Food Sci Emerg Technol 5:57–64CrossRef
Zurück zum Zitat Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366CrossRef Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366CrossRef
Zurück zum Zitat International Association of Wood Anatomists (IAWA) Committee (2004) IAWA List of microscopic features for softwood identification. IAWA J 25:1–70CrossRef International Association of Wood Anatomists (IAWA) Committee (2004) IAWA List of microscopic features for softwood identification. IAWA J 25:1–70CrossRef
Zurück zum Zitat Isasi P, Galván IM (2004) Redes neuronales artificiales: un enfoque práctico. [Artificial neural networks: a practical approach]. Pearson Educación, Madrid Isasi P, Galván IM (2004) Redes neuronales artificiales: un enfoque práctico. [Artificial neural networks: a practical approach]. Pearson Educación, Madrid
Zurück zum Zitat Jane FW (1970) The structure of wood, 2nd edn. Adam and Charles Black, London Jane FW (1970) The structure of wood, 2nd edn. Adam and Charles Black, London
Zurück zum Zitat Jiang W, Ozaktak BB, Mantri N, Tao Z, Lu H (2013) Classification of Camellia species from 3 sections using leaf anatomical data with back-propagation neural networks and support vector machines. Turk J Bot 37:1093–1103CrossRef Jiang W, Ozaktak BB, Mantri N, Tao Z, Lu H (2013) Classification of Camellia species from 3 sections using leaf anatomical data with back-propagation neural networks and support vector machines. Turk J Bot 37:1093–1103CrossRef
Zurück zum Zitat Jordan R, Feeney F, Nesbitt N, Evertsen JA (1998) Classification of wood species by neural network analysis of ultrasonic signals. Ultrasonics 36:219–222CrossRef Jordan R, Feeney F, Nesbitt N, Evertsen JA (1998) Classification of wood species by neural network analysis of ultrasonic signals. Ultrasonics 36:219–222CrossRef
Zurück zum Zitat Kavdir I (2004) Discrimination of sunflower, weed and soil by artificial neural networks. Comput Electron Agric 44:153–160CrossRef Kavdir I (2004) Discrimination of sunflower, weed and soil by artificial neural networks. Comput Electron Agric 44:153–160CrossRef
Zurück zum Zitat Kiani S, Jafari A (2012) Crop detection and positioning in the field using discriminant analysis and neural networks based on shape features. J Agr Sci Tech 14(4):755–765 Kiani S, Jafari A (2012) Crop detection and positioning in the field using discriminant analysis and neural networks based on shape features. J Agr Sci Tech 14(4):755–765
Zurück zum Zitat Koch G, Richter HG, Schmitt U (2011) Design and application of CITESwoodID Computer-aided identification and description of CITES-protected timbers. IAWA J 32:213–220CrossRef Koch G, Richter HG, Schmitt U (2011) Design and application of CITESwoodID Computer-aided identification and description of CITES-protected timbers. IAWA J 32:213–220CrossRef
Zurück zum Zitat Ladell JL (1959) A new method of measuring tracheid length. Forestry 32:124–125CrossRef Ladell JL (1959) A new method of measuring tracheid length. Forestry 32:124–125CrossRef
Zurück zum Zitat Lycken A, Oja J (2006) A multivariate approach to automatic grading of Pinus sylvestris sawn timber. Scand J For Res 21:167–174CrossRef Lycken A, Oja J (2006) A multivariate approach to automatic grading of Pinus sylvestris sawn timber. Scand J For Res 21:167–174CrossRef
Zurück zum Zitat Moshou D, Vrindts E, De Ketelaere B, De Baerdemaeker J, Ramon H (2001) A neural network based plant classifier. Comput Electron Agric 31:5–16CrossRef Moshou D, Vrindts E, De Ketelaere B, De Baerdemaeker J, Ramon H (2001) A neural network based plant classifier. Comput Electron Agric 31:5–16CrossRef
Zurück zum Zitat Myhara RM, Sablani S (2001) Unification of fruit water sorption isotherms using artificial neural networks. Dry Technol 19:1543–1554CrossRef Myhara RM, Sablani S (2001) Unification of fruit water sorption isotherms using artificial neural networks. Dry Technol 19:1543–1554CrossRef
Zurück zum Zitat Nordmark U (2002) Knot identification from CT images of young Pinus sylvestris sawlogs using artificial neural networks. Scand J For Res 17:72–78CrossRef Nordmark U (2002) Knot identification from CT images of young Pinus sylvestris sawlogs using artificial neural networks. Scand J For Res 17:72–78CrossRef
Zurück zum Zitat Nordmark U (2003) Models of knots and log geometry of young Pinus sylvestris sawlogs extracted from computed tomographic Iiages. Scand J For Res 18:168–175CrossRef Nordmark U (2003) Models of knots and log geometry of young Pinus sylvestris sawlogs extracted from computed tomographic Iiages. Scand J For Res 18:168–175CrossRef
Zurück zum Zitat Ozsahin S (2013) Optimization of process parameters in oriented strand board manufacturing with artificial neural network analysis. Eur J Wood Prod 71:769–777CrossRef Ozsahin S (2013) Optimization of process parameters in oriented strand board manufacturing with artificial neural network analysis. Eur J Wood Prod 71:769–777CrossRef
Zurück zum Zitat Panchariya PC, Popovic D, Sharma AL (2002) Desorption isotherm modelling of black tea using artificial neural networks. Dry Technol 20:351–362CrossRef Panchariya PC, Popovic D, Sharma AL (2002) Desorption isotherm modelling of black tea using artificial neural networks. Dry Technol 20:351–362CrossRef
Zurück zum Zitat Peng G, Chen X, Wu W, Jiang X (2007) Modeling of water sorption isotherm for corn starch. J Food Eng 80:562–567CrossRef Peng G, Chen X, Wu W, Jiang X (2007) Modeling of water sorption isotherm for corn starch. J Food Eng 80:562–567CrossRef
Zurück zum Zitat Pérez ML, Martín Q (2003) Aplicaciones de las redes neuronales a la estadística. Cuadernos de estadística. [Applications of neural networks to statistics. Statistics notebooks]. La Muralla S.A, Madrid Pérez ML, Martín Q (2003) Aplicaciones de las redes neuronales a la estadística. Cuadernos de estadística. [Applications of neural networks to statistics. Statistics notebooks]. La Muralla S.A, Madrid
Zurück zum Zitat Ramírez GM, Chacón MI (2005) Clasificación de defectos en madera utilizando redes neuronales artificiales [Wood defects classification using artificial neural networks]. Comput y Sist 9:17–27 Ramírez GM, Chacón MI (2005) Clasificación de defectos en madera utilizando redes neuronales artificiales [Wood defects classification using artificial neural networks]. Comput y Sist 9:17–27
Zurück zum Zitat Reby D, Lek S, Dimopoulos I, Joachim J, Lauga J, Aulagnier S (1997) Artificial neural networks as a classification method in the behavioural sciences. Behav Processes 40:35–43CrossRefPubMed Reby D, Lek S, Dimopoulos I, Joachim J, Lauga J, Aulagnier S (1997) Artificial neural networks as a classification method in the behavioural sciences. Behav Processes 40:35–43CrossRefPubMed
Zurück zum Zitat Sha W (2007) Comment on the issues of statistical modelling with particular reference to the use of artificial neural networks. Appl Catal A Gen 324:87–89CrossRef Sha W (2007) Comment on the issues of statistical modelling with particular reference to the use of artificial neural networks. Appl Catal A Gen 324:87–89CrossRef
Zurück zum Zitat Turhan K, Serdar B (2013) Support vector machines in wood identification: the case of three Salix species from Turkey. Turk J Agric For 37:249–256 Turhan K, Serdar B (2013) Support vector machines in wood identification: the case of three Salix species from Turkey. Turk J Agric For 37:249–256
Zurück zum Zitat Wheeler EA (2011) Inside wood: a web resource for hardwood anatomy. IAWA J 32:199–211CrossRef Wheeler EA (2011) Inside wood: a web resource for hardwood anatomy. IAWA J 32:199–211CrossRef
Zurück zum Zitat Wong WK, Yuen CWM, Fan DD, Chan LK, Fung EHK (2009) Stitching defect detection and classification using wavelet transform and BP neural network. Expert Syst Appl 36:3845–3856CrossRef Wong WK, Yuen CWM, Fan DD, Chan LK, Fung EHK (2009) Stitching defect detection and classification using wavelet transform and BP neural network. Expert Syst Appl 36:3845–3856CrossRef
Zurück zum Zitat Yuen CWM, Wong WK, Qian SQ, Chan LK, Fung EHK (2009) A hybrid model using genetic algorithm and neural network for classifying garment defects. Expert Syst Appl 36:2037–2047CrossRef Yuen CWM, Wong WK, Qian SQ, Chan LK, Fung EHK (2009) A hybrid model using genetic algorithm and neural network for classifying garment defects. Expert Syst Appl 36:2037–2047CrossRef
Zurück zum Zitat Yusof R, Khalid M, Khairuddin ASM (2013) Fuzzy logic-based pre-classifier for tropical wood species recognition system. Mach Vis Appl 24:1589–1604CrossRef Yusof R, Khalid M, Khairuddin ASM (2013) Fuzzy logic-based pre-classifier for tropical wood species recognition system. Mach Vis Appl 24:1589–1604CrossRef
Metadaten
Titel
Application of artificial neural networks as a predictive method to differentiate the wood of Pinus sylvestris L. and Pinus nigra Arn subsp. salzmannii (Dunal) Franco
verfasst von
Luis G. Esteban
Paloma de Palacios
María Conde
Francisco G. Fernández
Alberto García-Iruela
Marta González-Alonso
Publikationsdatum
21.06.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Wood Science and Technology / Ausgabe 5/2017
Print ISSN: 0043-7719
Elektronische ISSN: 1432-5225
DOI
https://doi.org/10.1007/s00226-017-0932-7

Weitere Artikel der Ausgabe 5/2017

Wood Science and Technology 5/2017 Zur Ausgabe