Skip to main content
Erschienen in: Experiments in Fluids 3/2015

01.03.2015 | Research Article

Mitigation of wind tunnel wall interactions in subsonic cavity flows

verfasst von: Justin L. Wagner, Katya M. Casper, Steven J. Beresh, John F. Henfling, Russell W. Spillers, Brian O. Pruett

Erschienen in: Experiments in Fluids | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The flow over an open aircraft bay is often represented in a wind tunnel with a cavity. In flight, this flow is unconfined, though in experiments, the cavity is surrounded by wind tunnel walls. If untreated, wind tunnel wall effects can lead to significant distortions of cavity acoustics in subsonic flows. To understand and mitigate these cavity–tunnel interactions, a parametric approach was taken for flow over an L/D = 7 cavity at Mach numbers 0.6–0.8. With solid tunnel walls, a dominant cavity tone was observed, likely due to an interaction with a tunnel duct mode. An acoustic liner opposite the cavity decreased the amplitude of the dominant mode and its harmonics, a result observed by previous researchers. Acoustic dampeners were also placed in the tunnel sidewalls, which further decreased the dominant mode amplitudes and peak amplitudes associated with nonlinear interactions between cavity modes. This indicates that cavity resonance can be altered by tunnel sidewalls and that spanwise coupling should be addressed when conducting subsonic cavity experiments. Though mechanisms for dominant modes and nonlinear interactions likely exist in unconfined cavity flows, these effects can be amplified by the wind tunnel walls.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The theory of Alvarez and Kerschen (2005), which modeled the cavity shear layer as a vortex sheet and predicted cavity mode growth rates with eigenmode analysis, was not employed here.
 
Literatur
Zurück zum Zitat Alvarez JO, Kerschen EJ (2005) Influence of wind tunnel walls on cavity acoustic resonances. AIAA paper, 2804 Alvarez JO, Kerschen EJ (2005) Influence of wind tunnel walls on cavity acoustic resonances. AIAA paper, 2804
Zurück zum Zitat Alvarez JO, Kerschen EJ, Tumin A (2004) A theoretical model for cavity acoustic resonances in subsonic flow. AIAA, 2845 Alvarez JO, Kerschen EJ, Tumin A (2004) A theoretical model for cavity acoustic resonances in subsonic flow. AIAA, 2845
Zurück zum Zitat Arunajatesan S, Barone MF, Wagner JL, Casper KM, Beresh SJ (2014) Joint experimental/computational investigation into the effects of finite width on transonic cavity flow. AIAA paper, 3027 Arunajatesan S, Barone MF, Wagner JL, Casper KM, Beresh SJ (2014) Joint experimental/computational investigation into the effects of finite width on transonic cavity flow. AIAA paper, 3027
Zurück zum Zitat ASTM C423 (2009) Standard test method for sound absorption and sound absorption coefficients by the reverberation room method. ASTM, Philadelphia, USA ASTM C423 (2009) Standard test method for sound absorption and sound absorption coefficients by the reverberation room method. ASTM, Philadelphia, USA
Zurück zum Zitat Beresh SJ, Wagner JL, Pruett BOM, Henfling JF, Spillers RW (2014) Supersonic flow over a finite-width rectangular cavity. AIAA J 53(2):296–310CrossRef Beresh SJ, Wagner JL, Pruett BOM, Henfling JF, Spillers RW (2014) Supersonic flow over a finite-width rectangular cavity. AIAA J 53(2):296–310CrossRef
Zurück zum Zitat Brès GA, Colonius T (2008) Three-dimensional instabilities in compressible flow over open cavities. J Fluid Mech 599:309–339CrossRefMATH Brès GA, Colonius T (2008) Three-dimensional instabilities in compressible flow over open cavities. J Fluid Mech 599:309–339CrossRefMATH
Zurück zum Zitat Cattafesta LN, Song Q, Williams DR, Rowley CW, Alvi FS (2008) Active control of flow-induced cavity oscillations. Prog Aerosp Sci 44:479–502CrossRef Cattafesta LN, Song Q, Williams DR, Rowley CW, Alvi FS (2008) Active control of flow-induced cavity oscillations. Prog Aerosp Sci 44:479–502CrossRef
Zurück zum Zitat Debiasi M, Little J, Malone J, Samimy M, Yan P, Özbay H, Myatt J (2004) An experimental study of subsonic cavity flow–physical understanding and control. AIAA paper, 2123 Debiasi M, Little J, Malone J, Samimy M, Yan P, Özbay H, Myatt J (2004) An experimental study of subsonic cavity flow–physical understanding and control. AIAA paper, 2123
Zurück zum Zitat Dix RE, Bauer RC (2000) Experimental and predicted acoustic amplitudes in a rectangular cavity. AIAA paper, 0472 Dix RE, Bauer RC (2000) Experimental and predicted acoustic amplitudes in a rectangular cavity. AIAA paper, 0472
Zurück zum Zitat Dix RE, Bauer RC (2000) Experimental and theoretical study of cavity acoustics. AEDC-TR-99-4, May 2000 Dix RE, Bauer RC (2000) Experimental and theoretical study of cavity acoustics. AEDC-TR-99-4, May 2000
Zurück zum Zitat Goethert BH (1961) Transonic wind tunnel testing. Dover, New York Goethert BH (1961) Transonic wind tunnel testing. Dover, New York
Zurück zum Zitat Goethert BH (1956) Physical aspects of three-dimensional wave reflections in transonic wind tunnels at Mach number 1.20 (perforated, slotted and combined slotted-perforated walls). AEDC-TR-55-45 Goethert BH (1956) Physical aspects of three-dimensional wave reflections in transonic wind tunnels at Mach number 1.20 (perforated, slotted and combined slotted-perforated walls). AEDC-TR-55-45
Zurück zum Zitat Heller HH, Bliss DB (1975) The physical mechanism of flow induced pressure fluctuations in cavities and concepts for suppression. AIAA paper, 75–491 Heller HH, Bliss DB (1975) The physical mechanism of flow induced pressure fluctuations in cavities and concepts for suppression. AIAA paper, 75–491
Zurück zum Zitat Kegerise MA (1999) An experimental investigation of flow induced cavity oscillations. Ph.D. Thesis, Department of Mechanical Engineering, Syracuse University, New York, USA Kegerise MA (1999) An experimental investigation of flow induced cavity oscillations. Ph.D. Thesis, Department of Mechanical Engineering, Syracuse University, New York, USA
Zurück zum Zitat Kegerise MA, Spina EF, Garg S, Cattafesta LN (2005) Mode-switching and nonlinear effects in compressible flow over a cavity. Phys Fluids 16(3):678–687CrossRef Kegerise MA, Spina EF, Garg S, Cattafesta LN (2005) Mode-switching and nonlinear effects in compressible flow over a cavity. Phys Fluids 16(3):678–687CrossRef
Zurück zum Zitat Krishnamurty K (1955) Acoustic radiation from two-dimensional rectangular cutouts in aerodynamic surfaces. NACA TN 3487 Krishnamurty K (1955) Acoustic radiation from two-dimensional rectangular cutouts in aerodynamic surfaces. NACA TN 3487
Zurück zum Zitat Larchevêque L, Sagaut P, Labbé O (2007) Large-Eddy simulation of a subsonic cavity flow including asymmetric three-dimensional effects. J Fluid Mech 577:105–126CrossRefMATH Larchevêque L, Sagaut P, Labbé O (2007) Large-Eddy simulation of a subsonic cavity flow including asymmetric three-dimensional effects. J Fluid Mech 577:105–126CrossRefMATH
Zurück zum Zitat McCanless GF, Boone JR (1974) Noise reduction in transonic wind tunnels. J Acoust Soc Am 56(5):1501–1510CrossRef McCanless GF, Boone JR (1974) Noise reduction in transonic wind tunnels. J Acoust Soc Am 56(5):1501–1510CrossRef
Zurück zum Zitat McGregor OW, White RA (1970) Drag of rectangular cavities in supersonic and transonic flow including the effects of cavity resonance. AIAA J 8(11):1959–1964CrossRef McGregor OW, White RA (1970) Drag of rectangular cavities in supersonic and transonic flow including the effects of cavity resonance. AIAA J 8(11):1959–1964CrossRef
Zurück zum Zitat Murray N (2006) Flowfield dynamics in subsonic cavity flows. Ph.D. Thesis, Department of Aeroacoustics, University of Mississippi, Oxford, USA Murray N (2006) Flowfield dynamics in subsonic cavity flows. Ph.D. Thesis, Department of Aeroacoustics, University of Mississippi, Oxford, USA
Zurück zum Zitat Murray N, Sallstrom E, Ukeiley L (2009) Properties of subsonic open cavity flow fields. Phys Fluids 21(9):095103 Murray N, Sallstrom E, Ukeiley L (2009) Properties of subsonic open cavity flow fields. Phys Fluids 21(9):095103
Zurück zum Zitat Norton MP, Karczub DG (2003) Fundamentals of noise and vibration analysis for engineers. Cambridge University Press, Cambridge, p 316CrossRef Norton MP, Karczub DG (2003) Fundamentals of noise and vibration analysis for engineers. Cambridge University Press, Cambridge, p 316CrossRef
Zurück zum Zitat Rockwell D, Knisely C (1980) Observations of the three-dimensional nature of unstable flow past a cavity. Phys Fluids 23(3):425–431CrossRef Rockwell D, Knisely C (1980) Observations of the three-dimensional nature of unstable flow past a cavity. Phys Fluids 23(3):425–431CrossRef
Zurück zum Zitat Rockwell D, Naudascher E (1978) Review-self sustaining oscillations of flow past cavities. J Fluids Eng 100:152–165CrossRef Rockwell D, Naudascher E (1978) Review-self sustaining oscillations of flow past cavities. J Fluids Eng 100:152–165CrossRef
Zurück zum Zitat Rockwell D, Naudascher E (1979) Self-sustained oscillations of impinging free shear layers. Annu Rev Fluid Mech 11:67–94CrossRef Rockwell D, Naudascher E (1979) Self-sustained oscillations of impinging free shear layers. Annu Rev Fluid Mech 11:67–94CrossRef
Zurück zum Zitat Rossiter JE (1964) Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Aeronautical Research Council Reports and Memoranda, October 1964 Rossiter JE (1964) Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Aeronautical Research Council Reports and Memoranda, October 1964
Zurück zum Zitat Rowley CW, Williams DR, Colonius T, Murray RM, MacMartin DG, Fabris D (2002) Model-based control of cavity oscillations, part II: system identification and analysis. AIAA paper, 0972 Rowley CW, Williams DR, Colonius T, Murray RM, MacMartin DG, Fabris D (2002) Model-based control of cavity oscillations, part II: system identification and analysis. AIAA paper, 0972
Zurück zum Zitat Rowley CW, Williams DR (2006) Dynamics and control of high-reynolds-number flow over open cavities. Annu Rev Fluid Mech 38:251–276CrossRefMathSciNet Rowley CW, Williams DR (2006) Dynamics and control of high-reynolds-number flow over open cavities. Annu Rev Fluid Mech 38:251–276CrossRefMathSciNet
Zurück zum Zitat Rowley CW, Williams DR, Colonius T, Murray RM, Macmynowski DG (2006) Linear models for control of cavity flow oscillations. J Fluid Mech 547:317–330CrossRefMATH Rowley CW, Williams DR, Colonius T, Murray RM, Macmynowski DG (2006) Linear models for control of cavity flow oscillations. J Fluid Mech 547:317–330CrossRefMATH
Zurück zum Zitat Song Q (2008) Closed-loop control of flow-induced cavity oscillations. Ph.D. Thesis, Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, USA Song Q (2008) Closed-loop control of flow-induced cavity oscillations. Ph.D. Thesis, Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, USA
Zurück zum Zitat Stallings RL, Wilcox FJ (1987) Experimental cavity pressure distributions at supersonic speeds. NASA technical paper 2683, June 1987 Stallings RL, Wilcox FJ (1987) Experimental cavity pressure distributions at supersonic speeds. NASA technical paper 2683, June 1987
Zurück zum Zitat Tracy MB, Plentovich EB (1997) Cavity unsteady-pressure measurements at subsonic and transonic speeds. NASA technical paper 3669, December 1997 Tracy MB, Plentovich EB (1997) Cavity unsteady-pressure measurements at subsonic and transonic speeds. NASA technical paper 3669, December 1997
Zurück zum Zitat Ukeiley LS, Murray NE (2005) Velocity and surface pressure measurements in an open cavity. Exp Fluids 38:656–671CrossRef Ukeiley LS, Murray NE (2005) Velocity and surface pressure measurements in an open cavity. Exp Fluids 38:656–671CrossRef
Zurück zum Zitat Varner MW (1975) Noise generation in transonic tunnels. AIAA J 13(11):1417–1418CrossRef Varner MW (1975) Noise generation in transonic tunnels. AIAA J 13(11):1417–1418CrossRef
Zurück zum Zitat Wagner JL, Casper KM, Beresh SJ, Hunter PS, Spillers, RW, Henfling JF, Mayes RL (2013) Experimental investigation of fluid-structure interactions in compressible cavity flows. AIAA paper, 3172 Wagner JL, Casper KM, Beresh SJ, Hunter PS, Spillers, RW, Henfling JF, Mayes RL (2013) Experimental investigation of fluid-structure interactions in compressible cavity flows. AIAA paper, 3172
Zurück zum Zitat Williams DR, Fabris D, Morrow J (2000) Experiments on controlling multiple acoustic modes in cavities. AIAA paper, 1903 Williams DR, Fabris D, Morrow J (2000) Experiments on controlling multiple acoustic modes in cavities. AIAA paper, 1903
Zurück zum Zitat Zhang K, Naguib AM (2011) Effect of finite cavity width on flow oscillation in a low-mach-number cavity flow. Exp Fluids 51(5):1209–1229CrossRef Zhang K, Naguib AM (2011) Effect of finite cavity width on flow oscillation in a low-mach-number cavity flow. Exp Fluids 51(5):1209–1229CrossRef
Zurück zum Zitat Zhuang N, Alvi FS, Alkislar MB, Shih C (2006) supersonic cavity flows and their control. AIAA J 44(9):2118–2128CrossRef Zhuang N, Alvi FS, Alkislar MB, Shih C (2006) supersonic cavity flows and their control. AIAA J 44(9):2118–2128CrossRef
Metadaten
Titel
Mitigation of wind tunnel wall interactions in subsonic cavity flows
verfasst von
Justin L. Wagner
Katya M. Casper
Steven J. Beresh
John F. Henfling
Russell W. Spillers
Brian O. Pruett
Publikationsdatum
01.03.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 3/2015
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-015-1924-8

Weitere Artikel der Ausgabe 3/2015

Experiments in Fluids 3/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.