Skip to main content
Erschienen in: Engineering with Computers 3/2021

07.02.2020 | Original Article

A smart metaheuristic algorithm for solving engineering problems

verfasst von: Dunia Sattar, Ramzy Salim

Erschienen in: Engineering with Computers | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Every day, the immature sunflowers generate heliotropic movements. Two growth mechanisms are controlled on the heliotropic movements of immature sunflowers. The first mechanism is the sun-tracking phenomenon, which is caused by a growth hormone called Auxin.While the second mechanism is the biological clock which is responsible for the nocturnal reorientation of the immature sunflowers at the night. By clarifying and idealizing the growth mechanisms of the immature sunflowers in nature, a new type of nature-inspired optimization algorithm, called Smart Flower Optimization Algorithm (SFOA), is proposed in this paper. The proposed algorithm has been presented in two modes: sunny and cloudy or rainy modes depending on the weather. The SFOA is benchmarked on three parts. First, a set of 15 benchmark functions on CEC 2015 is used to test the efficiency of the SFOA using statistical analysis and Wilcoxon’s test. Second, the SFOA is utilized for designing an adaptive IIR system to appropriate the unknown system. Finally, four different engineering design problems (three-bar truss, tension/compression spring, speed reducer, and welded beam) are solved by SFOA. In the first part, the SFOA is compared with well-known algorithms. The results confirm the capabilities and efficiency of the proposed algorithm in finding the optimum. The promising solutions obtained for the IIR system identification and the engineering design problems demonstrate that the SFOA significantly outperforms other algorithms and show the applicability of the proposed algorithm in solving the real-world problems with unknown search spaces as well.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Mohanty PK, Parhi DR (2015) A new hybrid optimization algorithm for multiple mobile robots navigation based on the CS-ANFIS approach. Memet Comput 7(4):255–273 Mohanty PK, Parhi DR (2015) A new hybrid optimization algorithm for multiple mobile robots navigation based on the CS-ANFIS approach. Memet Comput 7(4):255–273
2.
Zurück zum Zitat Kundu S, Parhi DR (2016) Navigation of underwater robot based on dynamically adaptive harmony search algorithm. Memet Comput 8(2):125–146 Kundu S, Parhi DR (2016) Navigation of underwater robot based on dynamically adaptive harmony search algorithm. Memet Comput 8(2):125–146
3.
Zurück zum Zitat Dengiz B, Altiparmak F, Belgin O (2010) Design of reliable communication networks: a hybrid ant colony optimization algorithm. IIE Trans 42(4):273–287 Dengiz B, Altiparmak F, Belgin O (2010) Design of reliable communication networks: a hybrid ant colony optimization algorithm. IIE Trans 42(4):273–287
4.
Zurück zum Zitat Zhai X, Guan X, Zhu C, Shu L, Yuan J (2018) Optimization algorithms for multiaccess green communications in Internet of Things. IEEE Internet Things 5(3):1739–1748 Zhai X, Guan X, Zhu C, Shu L, Yuan J (2018) Optimization algorithms for multiaccess green communications in Internet of Things. IEEE Internet Things 5(3):1739–1748
5.
Zurück zum Zitat Wu G, Pedrycz W, Li H, Ma M, Liu J (2015) Coordinated planning of heterogeneous earth observation resources. IEEE Trans Syst Man CY-S 46(1):109–125 Wu G, Pedrycz W, Li H, Ma M, Liu J (2015) Coordinated planning of heterogeneous earth observation resources. IEEE Trans Syst Man CY-S 46(1):109–125
6.
Zurück zum Zitat Zhang JW, Wang GG (2012) Image matching using a bat algorithm with mutation. In: Applied mechanics and materials. Trans Tech Publ, vol 203, pp 88–93 Zhang JW, Wang GG (2012) Image matching using a bat algorithm with mutation. In: Applied mechanics and materials. Trans Tech Publ, vol 203, pp 88–93
7.
Zurück zum Zitat Lagos-Eulogio P, Seck-Tuoh-Mora JC, Hernandez-Romero N, Medina-Marin J (2017) A new design method for adaptive IIR system identification using hybrid CPSO and DE. Nonlinear Dyn 88(4):2371–2389 Lagos-Eulogio P, Seck-Tuoh-Mora JC, Hernandez-Romero N, Medina-Marin J (2017) A new design method for adaptive IIR system identification using hybrid CPSO and DE. Nonlinear Dyn 88(4):2371–2389
10.
Zurück zum Zitat Zhang Y, Liu J, Zhou M, Jiang Z (2016) A multi-objective memetic algorithm based on decomposition for big optimization problems. Memet Comput 8(1):45–61 Zhang Y, Liu J, Zhou M, Jiang Z (2016) A multi-objective memetic algorithm based on decomposition for big optimization problems. Memet Comput 8(1):45–61
11.
Zurück zum Zitat Elsayed S, Sarker R (2016) Differential evolution framework for big data optimization. Memet Comput 8(1):17–33 Elsayed S, Sarker R (2016) Differential evolution framework for big data optimization. Memet Comput 8(1):17–33
12.
Zurück zum Zitat Rizk-Allah RM, El-Sehiemy RA, Wang G-G (2018) A novel parallel hurricane optimization algorithm for secure emission/economic load dispatch solution. Appl Soft Comput 63:206–222 Rizk-Allah RM, El-Sehiemy RA, Wang G-G (2018) A novel parallel hurricane optimization algorithm for secure emission/economic load dispatch solution. Appl Soft Comput 63:206–222
13.
Zurück zum Zitat Das S, Bhattacharya A, Chakraborty AK (2018) Solution of short-term hydrothermal scheduling using sine cosine algorithm. Soft Comput 22(19):6409–6427MATH Das S, Bhattacharya A, Chakraborty AK (2018) Solution of short-term hydrothermal scheduling using sine cosine algorithm. Soft Comput 22(19):6409–6427MATH
14.
Zurück zum Zitat Mahdad B, Srairi K (2018) A new interactive sine cosine algorithm for loading margin stability improvement under contingency. Electr Eng 100(2):913–933 Mahdad B, Srairi K (2018) A new interactive sine cosine algorithm for loading margin stability improvement under contingency. Electr Eng 100(2):913–933
15.
Zurück zum Zitat Yi J-H, Wang J, Wang G-G (2016) Improved probabilistic neural networks with self-adaptive strategies for transformer fault diagnosis problem. Adv Mech Eng 8(1):1–13 Yi J-H, Wang J, Wang G-G (2016) Improved probabilistic neural networks with self-adaptive strategies for transformer fault diagnosis problem. Adv Mech Eng 8(1):1–13
16.
Zurück zum Zitat Sy Obara, Ito Y, Okada M (2018) Optimization algorithm for power-source arrangement that levels the fluctuations in wide-area networks of renewable energy. Energy 142:447–461 Sy Obara, Ito Y, Okada M (2018) Optimization algorithm for power-source arrangement that levels the fluctuations in wide-area networks of renewable energy. Energy 142:447–461
18.
Zurück zum Zitat Liu K, Gong D, Meng F, Chen H, Wang G-G (2017) Gesture segmentation based on a two-phase estimation of distribution algorithm. Inf Sci 394:88–105MathSciNet Liu K, Gong D, Meng F, Chen H, Wang G-G (2017) Gesture segmentation based on a two-phase estimation of distribution algorithm. Inf Sci 394:88–105MathSciNet
19.
Zurück zum Zitat Wang G-G, Cai X, Cui Z, Min G, Chen J (2017) High performance computing for cyber physical social systems by using evolutionary multi-objective optimization algorithm. IEEE Trans Emerg Top Com Wang G-G, Cai X, Cui Z, Min G, Chen J (2017) High performance computing for cyber physical social systems by using evolutionary multi-objective optimization algorithm. IEEE Trans Emerg Top Com
20.
Zurück zum Zitat Cui Z, Sun B, Wang G, Xue Y, Chen J (2017) A novel oriented cuckoo search algorithm to improve DV-Hop performance for cyber–physical systems. J Parallel Distr Com 103:42–52 Cui Z, Sun B, Wang G, Xue Y, Chen J (2017) A novel oriented cuckoo search algorithm to improve DV-Hop performance for cyber–physical systems. J Parallel Distr Com 103:42–52
22.
Zurück zum Zitat Feng Y, Yang J, Wu C, Lu M, Zhao X-J (2018) Solving 0–1 knapsack problems by chaotic monarch butterfly optimization algorithm with Gaussian mutation. Memet Comput 10(2):135–150 Feng Y, Yang J, Wu C, Lu M, Zhao X-J (2018) Solving 0–1 knapsack problems by chaotic monarch butterfly optimization algorithm with Gaussian mutation. Memet Comput 10(2):135–150
23.
Zurück zum Zitat Feng Y-H, Wang G-G (2018) Binary moth search algorithm for discounted 0–1 knapsack problem. IEEE Access 6:10708–10719 Feng Y-H, Wang G-G (2018) Binary moth search algorithm for discounted 0–1 knapsack problem. IEEE Access 6:10708–10719
25.
Zurück zum Zitat Kaveh A (2017) Advances in metaheuristic algorithms for optimal design of structures, 2nd edn. Springer, Berlin Kaveh A (2017) Advances in metaheuristic algorithms for optimal design of structures, 2nd edn. Springer, Berlin
26.
Zurück zum Zitat Yang X-S (2014) Nature-inspired optimization algorithms, 2nd edn. Elsevier, New York Yang X-S (2014) Nature-inspired optimization algorithms, 2nd edn. Elsevier, New York
27.
Zurück zum Zitat Lourenço HR, Martin OC, Stützle T (2003) Iterated local search. In: Handbook of metaheuristics. Springer, Berlin, pp 320–353 Lourenço HR, Martin OC, Stützle T (2003) Iterated local search. In: Handbook of metaheuristics. Springer, Berlin, pp 320–353
28.
Zurück zum Zitat Doğan B, Ölmez T (2015) A new metaheuristic for numerical function optimization: vortex Search algorithm. Inf Sci 293:125–145 Doğan B, Ölmez T (2015) A new metaheuristic for numerical function optimization: vortex Search algorithm. Inf Sci 293:125–145
29.
Zurück zum Zitat Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24(11):1097–1100MathSciNetMATH Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24(11):1097–1100MathSciNetMATH
31.
Zurück zum Zitat Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control and artificial intelligence, 2nd edn. MIT Press, London Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control and artificial intelligence, 2nd edn. MIT Press, London
32.
Zurück zum Zitat Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95 proceedings of the sixth international symposium on micro machine and human science. IEEE, pp 39-43 Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95 proceedings of the sixth international symposium on micro machine and human science. IEEE, pp 39-43
33.
Zurück zum Zitat Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359MathSciNetMATH Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359MathSciNetMATH
34.
Zurück zum Zitat Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76 (2):60–68 Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76 (2):60–68
35.
Zurück zum Zitat Mehrabian AR, Lucas C (2006) A novel numerical optimization algorithm inspired from weed colonization. Ecol Inform 1(4):355–366 Mehrabian AR, Lucas C (2006) A novel numerical optimization algorithm inspired from weed colonization. Ecol Inform 1(4):355–366
38.
Zurück zum Zitat Yang X-S (2009) Firefly algorithms for multimodal optimization. In: Stochastic algorithms: foundations and applications. Springer, Berlin, pp 169–178 Yang X-S (2009) Firefly algorithms for multimodal optimization. In: Stochastic algorithms: foundations and applications. Springer, Berlin, pp 169–178
41.
Zurück zum Zitat Yang X-S (2012) Flower pollination algorithm for global optimization. Unconventional computation and natural computation. Springer, Berlin Heidelberg, pp 240–249 Yang X-S (2012) Flower pollination algorithm for global optimization. Unconventional computation and natural computation. Springer, Berlin Heidelberg, pp 240–249
42.
Zurück zum Zitat Zhao Z, Cui Z, Zeng J, Yue X (2011) Artificial plant optimization algorithm for constrained optimization problems. In: 2011 second international conference on innovations in bio-inspired computing and applications, pp 120–123. https://doi.org/10.1109/ibica.2011.34 Zhao Z, Cui Z, Zeng J, Yue X (2011) Artificial plant optimization algorithm for constrained optimization problems. In: 2011 second international conference on innovations in bio-inspired computing and applications, pp 120–123. https://​doi.​org/​10.​1109/​ibica.​2011.​34
44.
Zurück zum Zitat Wu G (2016) Across neighborhood search for numerical optimization. Inf Sci 329:597–618MATH Wu G (2016) Across neighborhood search for numerical optimization. Inf Sci 329:597–618MATH
45.
Zurück zum Zitat Wang G-G, Deb S, Cui Z (2019) Monarch butterfly optimization. Nerural Comput Appl 31(7):1995–2014 Wang G-G, Deb S, Cui Z (2019) Monarch butterfly optimization. Nerural Comput Appl 31(7):1995–2014
46.
Zurück zum Zitat Wang G-G, Deb S, dos Santos Coelho L (2018) Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems. IJBIC 12(1):1–22 Wang G-G, Deb S, dos Santos Coelho L (2018) Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems. IJBIC 12(1):1–22
47.
Zurück zum Zitat Wang G-G, Deb S, Gao X-Z, Coelho LDS (2016) A new metaheuristic optimisation algorithm motivated by elephant herding behaviour. Int J Bio-Inspired Comput 8(6):394–409 Wang G-G, Deb S, Gao X-Z, Coelho LDS (2016) A new metaheuristic optimisation algorithm motivated by elephant herding behaviour. Int J Bio-Inspired Comput 8(6):394–409
48.
Zurück zum Zitat Wang G-G (2018) Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memet Comput 10(2):151–164 Wang G-G (2018) Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memet Comput 10(2):151–164
55.
Zurück zum Zitat Alba E, Dorronsoro B (2005) The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE Trans Evolut Comput 9(2):126–142 Alba E, Dorronsoro B (2005) The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE Trans Evolut Comput 9(2):126–142
56.
Zurück zum Zitat Lin L, Gen M (2009) Auto-tuning strategy for evolutionary algorithms: balancing between exploration and exploitation. Soft Comput 13(2):157–168MATH Lin L, Gen M (2009) Auto-tuning strategy for evolutionary algorithms: balancing between exploration and exploitation. Soft Comput 13(2):157–168MATH
57.
Zurück zum Zitat Wang G-G, Hossein Gandomi A, Hossein Alavi A (2013) A chaotic particle-swarm krill herd algorithm for global numerical optimization. Kybernetes 42(6):962–978MathSciNet Wang G-G, Hossein Gandomi A, Hossein Alavi A (2013) A chaotic particle-swarm krill herd algorithm for global numerical optimization. Kybernetes 42(6):962–978MathSciNet
58.
Zurück zum Zitat Wang G-G, Deb S, Gandomi AH, Zhang Z, Alavi AH (2016) Chaotic cuckoo search. Soft Comput 20(9):3349–3362 Wang G-G, Deb S, Gandomi AH, Zhang Z, Alavi AH (2016) Chaotic cuckoo search. Soft Comput 20(9):3349–3362
61.
Zurück zum Zitat Wang R, Purshouse RC, Fleming PJ (2012) Preference-inspired coevolutionary algorithms for many-objective optimization. IEEE Trans Evolut Comput 17(4):474–494 Wang R, Purshouse RC, Fleming PJ (2012) Preference-inspired coevolutionary algorithms for many-objective optimization. IEEE Trans Evolut Comput 17(4):474–494
62.
Zurück zum Zitat Wang R, Zhang Q, Zhang T (2016) Decomposition-based algorithms using Pareto adaptive scalarizing methods. IEEE Trans Evolut Comput 20(6):821–837 Wang R, Zhang Q, Zhang T (2016) Decomposition-based algorithms using Pareto adaptive scalarizing methods. IEEE Trans Evolut Comput 20(6):821–837
63.
Zurück zum Zitat Wang R, Zhou Z, Ishibuchi H, Liao T, Zhang T (2016) Localized weighted sum method for many-objective optimization. IEEE Trans Evolut Comput 22(1):3–18 Wang R, Zhou Z, Ishibuchi H, Liao T, Zhang T (2016) Localized weighted sum method for many-objective optimization. IEEE Trans Evolut Comput 22(1):3–18
66.
Zurück zum Zitat Wang H, Yi J-H (2018) An improved optimization method based on krill herd and artificial bee colony with information exchange. Memet Comput 10(2):177–198 Wang H, Yi J-H (2018) An improved optimization method based on krill herd and artificial bee colony with information exchange. Memet Comput 10(2):177–198
67.
Zurück zum Zitat Wang G, Guo L, Wang H, Duan H, Liu L, Li J (2014) Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Nerural Comput Appl 24(3–4):853–871 Wang G, Guo L, Wang H, Duan H, Liu L, Li J (2014) Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Nerural Comput Appl 24(3–4):853–871
69.
Zurück zum Zitat Guo L, Wang G-G, Gandomi AH, Alavi AH, Duan H (2014) A new improved krill herd algorithm for global numerical optimization. Neurocomputing 138:392–402 Guo L, Wang G-G, Gandomi AH, Alavi AH, Duan H (2014) A new improved krill herd algorithm for global numerical optimization. Neurocomputing 138:392–402
70.
Zurück zum Zitat Wang G-G, Hossein Gandomi A, Yang X-S, Hossein Alavi A (2014) A novel improved accelerated particle swarm optimization algorithm for global numerical optimization. Eng Comput 31(7):1198–1220 Wang G-G, Hossein Gandomi A, Yang X-S, Hossein Alavi A (2014) A novel improved accelerated particle swarm optimization algorithm for global numerical optimization. Eng Comput 31(7):1198–1220
71.
Zurück zum Zitat Wang G-G, Gandomi AH, Alavi AH, Deb S (2016) A multi-stage krill herd algorithm for global numerical optimization. Int J Artif Intell Tools 25(02):1550030 Wang G-G, Gandomi AH, Alavi AH, Deb S (2016) A multi-stage krill herd algorithm for global numerical optimization. Int J Artif Intell Tools 25(02):1550030
72.
Zurück zum Zitat Wang G-G, Lu M, Dong Y-Q, Zhao X-J (2016) Self-adaptive extreme learning machine. Nerural Comput Appl 27(2):291–303 Wang G-G, Lu M, Dong Y-Q, Zhao X-J (2016) Self-adaptive extreme learning machine. Nerural Comput Appl 27(2):291–303
73.
Zurück zum Zitat Wu G, Shen X, Li H, Chen H, Lin A, Suganthan PN (2018) Ensemble of differential evolution variants. Inf Sci 423:172–186MathSciNet Wu G, Shen X, Li H, Chen H, Lin A, Suganthan PN (2018) Ensemble of differential evolution variants. Inf Sci 423:172–186MathSciNet
74.
Zurück zum Zitat Wu G, Pedrycz W, Suganthan PN, Li H (2017) Using variable reduction strategy to accelerate evolutionary optimization. Appl Soft Comput 61:283–293 Wu G, Pedrycz W, Suganthan PN, Li H (2017) Using variable reduction strategy to accelerate evolutionary optimization. Appl Soft Comput 61:283–293
75.
Zurück zum Zitat Wang G-G, Deb S, Zhao X, Cui Z (2018) A new monarch butterfly optimization with an improved crossover operator. Oper Res 18(3):731–755 Wang G-G, Deb S, Zhao X, Cui Z (2018) A new monarch butterfly optimization with an improved crossover operator. Oper Res 18(3):731–755
76.
Zurück zum Zitat Wang G-G, Guo L, Duan H, Wang H (2014) A new improved firefly algorithm for global numerical optimization. J Comput Theor Nanosci 11(2):477–485 Wang G-G, Guo L, Duan H, Wang H (2014) A new improved firefly algorithm for global numerical optimization. J Comput Theor Nanosci 11(2):477–485
78.
Zurück zum Zitat Wang G-G, Gandomi AH, Alavi AH (2015) Study of Lagrangian and evolutionary parameters in krill herd algorithm. In: Adaptation and hybridization in computational intelligence. Springer, Berlin, pp 111–128 Wang G-G, Gandomi AH, Alavi AH (2015) Study of Lagrangian and evolutionary parameters in krill herd algorithm. In: Adaptation and hybridization in computational intelligence. Springer, Berlin, pp 111–128
79.
Zurück zum Zitat Pan T-S, Dao T-K, Chu S-C (2015) Hybrid particle swarm optimization with bat algorithm. In: Genetic and evolutionary computing. Springer, Berlin, pp 37–47 Pan T-S, Dao T-K, Chu S-C (2015) Hybrid particle swarm optimization with bat algorithm. In: Genetic and evolutionary computing. Springer, Berlin, pp 37–47
80.
Zurück zum Zitat Sureshkumar T, Lingaraj M, Anand B, Premkumar T (2018) Hybrid firefly bat algorithm (HFBA)–based network security policy enforcement for PSA. Int J Commun Syst 31(14):e3740 Sureshkumar T, Lingaraj M, Anand B, Premkumar T (2018) Hybrid firefly bat algorithm (HFBA)–based network security policy enforcement for PSA. Int J Commun Syst 31(14):e3740
81.
Zurück zum Zitat Wang G-G, Gandomi AH, Yang X-S, Alavi AH (2016) A new hybrid method based on krill herd and cuckoo search for global optimisation tasks. Int J Bio-Inspired Comput 8(5):286–299 Wang G-G, Gandomi AH, Yang X-S, Alavi AH (2016) A new hybrid method based on krill herd and cuckoo search for global optimisation tasks. Int J Bio-Inspired Comput 8(5):286–299
82.
Zurück zum Zitat Wang G-G, Gandomi AH, Alavi AH, Gong D (2019) A comprehensive review of krill herd algorithm: variants, hybrids and applications. Artif Intell Rev 51(1):119–148 Wang G-G, Gandomi AH, Alavi AH, Gong D (2019) A comprehensive review of krill herd algorithm: variants, hybrids and applications. Artif Intell Rev 51(1):119–148
83.
Zurück zum Zitat Wang G-G, Gandomi AH, Zhao X, Chu HCE (2016) Hybridizing harmony search algorithm with cuckoo search for global numerical optimization. Soft Comput 20(1):273–285 Wang G-G, Gandomi AH, Zhao X, Chu HCE (2016) Hybridizing harmony search algorithm with cuckoo search for global numerical optimization. Soft Comput 20(1):273–285
85.
Zurück zum Zitat Wang G-G, Gandomi AH, Alavi AH, Hao G-S (2014) Hybrid krill herd algorithm with differential evolution for global numerical optimization. Nerural Comput Appl 25(2):297–308 Wang G-G, Gandomi AH, Alavi AH, Hao G-S (2014) Hybrid krill herd algorithm with differential evolution for global numerical optimization. Nerural Comput Appl 25(2):297–308
86.
Zurück zum Zitat Wang G-G, Gandomi AH, Alavi AH, Deb S (2016) A hybrid method based on krill herd and quantum-behaved particle swarm optimization. Nerural Comput Appl 27(4):989–1006 Wang G-G, Gandomi AH, Alavi AH, Deb S (2016) A hybrid method based on krill herd and quantum-behaved particle swarm optimization. Nerural Comput Appl 27(4):989–1006
87.
Zurück zum Zitat Wang G, Guo L, Duan H, Wang H, Liu L, Shao M (2013) Hybridizing harmony search with biogeography based optimization for global numerical optimization. J Comput Theor Nanosci 10(10):2312–2322 Wang G, Guo L, Duan H, Wang H, Liu L, Shao M (2013) Hybridizing harmony search with biogeography based optimization for global numerical optimization. J Comput Theor Nanosci 10(10):2312–2322
88.
Zurück zum Zitat Gai-Ge W, Amir HG, Amir HA, Yong-Quan D (2016) A hybrid meta-heuristic method based on firefly algorithm and krill herd. in: handbook of research on advanced computational techniques for simulation-based engineering. IGI Global, Hershey, PA, USA, pp 505–524. https://doi.org/10.4018/978-1-4666-9479-8.ch019 Gai-Ge W, Amir HG, Amir HA, Yong-Quan D (2016) A hybrid meta-heuristic method based on firefly algorithm and krill herd. in: handbook of research on advanced computational techniques for simulation-based engineering. IGI Global, Hershey, PA, USA, pp 505–524. https://​doi.​org/​10.​4018/​978-1-4666-9479-8.​ch019
89.
Zurück zum Zitat Laskar NM, Guha K, Chatterjee I, Chanda S, Baishnab KL, Paul PK (2019) HWPSO: a new hybrid whale-particle swarm optimization algorithm and its application in electronic design optimization problems. Appl Intell 49(1):265–291 Laskar NM, Guha K, Chatterjee I, Chanda S, Baishnab KL, Paul PK (2019) HWPSO: a new hybrid whale-particle swarm optimization algorithm and its application in electronic design optimization problems. Appl Intell 49(1):265–291
90.
Zurück zum Zitat Nenavath H, Jatoth RK (2019) Hybrid SCA–TLBO: a novel optimization algorithm for global optimization and visual tracking. Nerural Comput Appl 31(9):5497–5526 Nenavath H, Jatoth RK (2019) Hybrid SCA–TLBO: a novel optimization algorithm for global optimization and visual tracking. Nerural Comput Appl 31(9):5497–5526
91.
Zurück zum Zitat Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evolut Comput 1(1):67–82 Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evolut Comput 1(1):67–82
92.
Zurück zum Zitat Israelsson D, Johnsson A (1967) A theory for circumnutations in Helianthus annuus. Physiol Plant 20(4):957–976 Israelsson D, Johnsson A (1967) A theory for circumnutations in Helianthus annuus. Physiol Plant 20(4):957–976
93.
Zurück zum Zitat Atamian HS, Creux NM, Brown EA, Garner AG, Blackman BK, Harmer SL (2016) Circadian regulation of sunflower heliotropism, floral orientation, and pollinator visits. Science 353(6299):587–590 Atamian HS, Creux NM, Brown EA, Garner AG, Blackman BK, Harmer SL (2016) Circadian regulation of sunflower heliotropism, floral orientation, and pollinator visits. Science 353(6299):587–590
95.
Zurück zum Zitat S M (2010) Flowering plants: control of growth responses. In: Biology, 10th edn. McGraw-Hill, London, pp 473–492 S M (2010) Flowering plants: control of growth responses. In: Biology, 10th edn. McGraw-Hill, London, pp 473–492
96.
Zurück zum Zitat Briggs WR (2016) How do sunflowers follow the Sun—and to what end? Science 353(6299):541–542 Briggs WR (2016) How do sunflowers follow the Sun—and to what end? Science 353(6299):541–542
97.
Zurück zum Zitat Kutschera U, Briggs WR (2015) Phototropic solar tracking in sunflower plants: an integrative perspective. Ann Bot 117(1):1–8 Kutschera U, Briggs WR (2015) Phototropic solar tracking in sunflower plants: an integrative perspective. Ann Bot 117(1):1–8
98.
99.
Zurück zum Zitat Millar AJ (2004) Input signals to the plant circadian clock. J Exp Bot 55(395):277–283 Millar AJ (2004) Input signals to the plant circadian clock. J Exp Bot 55(395):277–283
100.
Zurück zum Zitat McClung CR (2006) Plant circadian rhythms. Plant Cell 18(4):792–803 McClung CR (2006) Plant circadian rhythms. Plant Cell 18(4):792–803
101.
Zurück zum Zitat Mora-Garcia S, de Leone MJ, Yanovsky M (2017) Time to grow: circadian regulation of growth and metabolism in photosynthetic organisms. Curr Opin Plant Biol 35:84–90 Mora-Garcia S, de Leone MJ, Yanovsky M (2017) Time to grow: circadian regulation of growth and metabolism in photosynthetic organisms. Curr Opin Plant Biol 35:84–90
102.
Zurück zum Zitat Inoue K, Araki T, Endo M (2018) Circadian clock during plant development. J Plant Res 131(1):59–66 Inoue K, Araki T, Endo M (2018) Circadian clock during plant development. J Plant Res 131(1):59–66
103.
Zurück zum Zitat Van der Kooi CJ (2016) Plant biology: flower orientation, temperature regulation and pollinator attraction. Curr Biol 26(21):R1143–R1145 Van der Kooi CJ (2016) Plant biology: flower orientation, temperature regulation and pollinator attraction. Curr Biol 26(21):R1143–R1145
104.
Zurück zum Zitat Casal A, Somolinos A (1982) Forced oscillations for the sunflower equation, entrainment. Nonlinear Anal Theor 6(4):397–414MathSciNetMATH Casal A, Somolinos A (1982) Forced oscillations for the sunflower equation, entrainment. Nonlinear Anal Theor 6(4):397–414MathSciNetMATH
107.
Zurück zum Zitat Wang J, Jiang W (2012) Hopf bifurcation analysis of two sunflower equations. Int J Biomath 5(01):1250001MathSciNetMATH Wang J, Jiang W (2012) Hopf bifurcation analysis of two sunflower equations. Int J Biomath 5(01):1250001MathSciNetMATH
108.
Zurück zum Zitat Bisconti L, Spadini M (2015) Sunflower model: time-dependent coefficients and topology of the periodic solutions set. NoDEA 22(6):1573–1590MathSciNetMATH Bisconti L, Spadini M (2015) Sunflower model: time-dependent coefficients and topology of the periodic solutions set. NoDEA 22(6):1573–1590MathSciNetMATH
109.
Zurück zum Zitat Pieruschka R, Huber G, Berry JA (2010) Control of transpiration by radiation. PNAS 107(30):13372–13377 Pieruschka R, Huber G, Berry JA (2010) Control of transpiration by radiation. PNAS 107(30):13372–13377
110.
Zurück zum Zitat Qu B, Liang J, Suganthan P, Chen Q (2014) Problem definitions and evaluation criteria for the CEC 2015 competition on single objective multi-niche optimization. Computational Intelligence Laboratory, Zhengzhou University Zhengzhou, China, Tech Rep Qu B, Liang J, Suganthan P, Chen Q (2014) Problem definitions and evaluation criteria for the CEC 2015 competition on single objective multi-niche optimization. Computational Intelligence Laboratory, Zhengzhou University Zhengzhou, China, Tech Rep
112.
Zurück zum Zitat Dai C, Chen W, Zhu Y (2009) Seeker optimization algorithm for digital IIR filter design. IEEE Trans Ind Electron 57(5):1710–1718 Dai C, Chen W, Zhu Y (2009) Seeker optimization algorithm for digital IIR filter design. IEEE Trans Ind Electron 57(5):1710–1718
114.
Zurück zum Zitat Mirjalili S, Lewis A, Sadiq AS (2014) Autonomous particles groups for particle swarm optimization. Arab J Sci Eng 39(6):4683–4697MATH Mirjalili S, Lewis A, Sadiq AS (2014) Autonomous particles groups for particle swarm optimization. Arab J Sci Eng 39(6):4683–4697MATH
116.
Zurück zum Zitat Panda G, Pradhan PM, Majhi B (2011) IIR system identification using cat swarm optimization. Expert Syst Appl 38(10):12671–12683 Panda G, Pradhan PM, Majhi B (2011) IIR system identification using cat swarm optimization. Expert Syst Appl 38(10):12671–12683
117.
Zurück zum Zitat Kumar M, Aggarwal A, Rawat TK (2016) Bat algorithm: application to adaptive infinite impulse response system identification. Arab J Sci Eng 41(9):3587–3604 Kumar M, Aggarwal A, Rawat TK (2016) Bat algorithm: application to adaptive infinite impulse response system identification. Arab J Sci Eng 41(9):3587–3604
118.
Zurück zum Zitat Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Nerural Comput Appl 27(2):495–513 Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Nerural Comput Appl 27(2):495–513
119.
Zurück zum Zitat Belegundu AD (1983) A study of mathematical programming methods for structural optimization. Int J Numer Methods Eng 21(9):1583–1599MathSciNetMATH Belegundu AD (1983) A study of mathematical programming methods for structural optimization. Int J Numer Methods Eng 21(9):1583–1599MathSciNetMATH
Metadaten
Titel
A smart metaheuristic algorithm for solving engineering problems
verfasst von
Dunia Sattar
Ramzy Salim
Publikationsdatum
07.02.2020
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 3/2021
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-020-00951-x

Weitere Artikel der Ausgabe 3/2021

Engineering with Computers 3/2021 Zur Ausgabe

Neuer Inhalt