Skip to main content
Erschienen in: Archive of Applied Mechanics 8/2018

04.04.2018 | Original

A time-domain system identification numerical procedure for obtaining linear dynamical models of multibody mechanical systems

verfasst von: Carmine M. Pappalardo, Domenico Guida

Erschienen in: Archive of Applied Mechanics | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper is focused on the development of a numerical procedure for solving the system identification problem of linear dynamical models that mathematically describe multibody mechanical systems. To this end, an input–output representation of the time evolution of a general mechanical system based on a sequence of matrices referred to as Markov parameters is employed. The set of Markov parameters incorporate the state-space matrices that allow for describing the dynamic behavior of a general mechanical system considering the assumption of structural linearity. The system Markov parameters are defined by means of a discretization process applied to the analytical description of a mechanical system, and therefore, they are difficult to obtain directly from observable measurements. However, a state observer can be introduced in order to define a set of observer Markov parameters that can be readily recovered from input–output experimental data. The observer Markov parameters obtained by using a least-square approach allow for computing in a recursive manner the system Markov parameters as well as another discrete sequence of matrices referred to as observer gain Markov parameters. Subsequently, the system and observer gain Markov parameters identified from observable input–output data are used for constructing a sequence of generalized Hankel matrices from which a state-space model of the mechanical system of interest can be extracted. This fundamental step of the identification procedure is performed in the algorithm elaborated in this work employing a numerical procedure which relies on the use of the Moore–Penrose pseudoinverse matrix obtained by means of the singular value decomposition. In the paper, the principal analytical and numerical aspects of the proposed identification algorithm are described in detail. Furthermore, a numerical example based on a simple vehicle model is discussed in order to verify by means of numerical experiments the effectiveness of the identification procedure developed in this work.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Katayama, T.: Subspace Methods for System Identification. Springer, Berlin (2006)MATH Katayama, T.: Subspace Methods for System Identification. Springer, Berlin (2006)MATH
4.
Zurück zum Zitat Reynders, E.: System identification methods for (operational) modal analysis: review and comparison. Arch. Comput. Methods Eng. 19(1), 51–124 (2012)MathSciNetCrossRefMATH Reynders, E.: System identification methods for (operational) modal analysis: review and comparison. Arch. Comput. Methods Eng. 19(1), 51–124 (2012)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Tangirala, A.K.: Principles of System Identification: Theory and Practice. CRC Press, Boca Raton (2014) Tangirala, A.K.: Principles of System Identification: Theory and Practice. CRC Press, Boca Raton (2014)
6.
Zurück zum Zitat Lus, H., De Angelis, M., Betti, R., Longman, R.W.: Constructing second-order models of mechanical systems from identified state space realizations. Part I: theoretical discussions. J. Eng. Mech. 129(5), 477–488 (2003)CrossRef Lus, H., De Angelis, M., Betti, R., Longman, R.W.: Constructing second-order models of mechanical systems from identified state space realizations. Part I: theoretical discussions. J. Eng. Mech. 129(5), 477–488 (2003)CrossRef
7.
Zurück zum Zitat Lus, H., De Angelis, M., Betti, R., Longman, R.W.: Constructing second-order models of mechanical systems from identified state space realizations. Part II: numerical investigations. J. Eng. Mech. 129(5), 489–531 (2003)CrossRef Lus, H., De Angelis, M., Betti, R., Longman, R.W.: Constructing second-order models of mechanical systems from identified state space realizations. Part II: numerical investigations. J. Eng. Mech. 129(5), 489–531 (2003)CrossRef
8.
Zurück zum Zitat Gagg Filho, L.A., Da Conceicao, S.M., Vasques, C.H., De Abreu, G.L.C.M., Lopes Jr., V., Brennan, M.J.: Experimental identification and control of a cantilever beam using ERA/OKID with a LQR controller. J. Control Autom. Electr. Syst. 25(2), 161–173 (2014)CrossRef Gagg Filho, L.A., Da Conceicao, S.M., Vasques, C.H., De Abreu, G.L.C.M., Lopes Jr., V., Brennan, M.J.: Experimental identification and control of a cantilever beam using ERA/OKID with a LQR controller. J. Control Autom. Electr. Syst. 25(2), 161–173 (2014)CrossRef
9.
Zurück zum Zitat Mercere, G., Prot, O., Ramos, J.A.: Identification of parameterized gray-box state-space systems: from a black-box linear time-invariant representation to a structured one. IEEE Trans. Autom. Control 59(11), 2873–2885 (2014)MathSciNetCrossRefMATH Mercere, G., Prot, O., Ramos, J.A.: Identification of parameterized gray-box state-space systems: from a black-box linear time-invariant representation to a structured one. IEEE Trans. Autom. Control 59(11), 2873–2885 (2014)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Ramos, J.A., Mercere, G.: Subspace algorithms for identifying separable-in-denominator 2d systems with deterministic stochastic inputs. Int. J. Control 89(12), 2584–2610 (2016)MathSciNetCrossRefMATH Ramos, J.A., Mercere, G.: Subspace algorithms for identifying separable-in-denominator 2d systems with deterministic stochastic inputs. Int. J. Control 89(12), 2584–2610 (2016)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Guida, D., Nilvetti, F., Pappalardo, C.M.: Parameter identification of a two degrees of freedom mechanical system. Int. J. Mech. 3(2), 23–30 (2009) Guida, D., Nilvetti, F., Pappalardo, C.M.: Parameter identification of a two degrees of freedom mechanical system. Int. J. Mech. 3(2), 23–30 (2009)
12.
Zurück zum Zitat Guida, D., Pappalardo, C.M.: Sommerfeld and mass parameter identification of lubricated journal bearing. WSEAS Trans. Appl. Theor. Mech. 4(4), 205–214 (2009) Guida, D., Pappalardo, C.M.: Sommerfeld and mass parameter identification of lubricated journal bearing. WSEAS Trans. Appl. Theor. Mech. 4(4), 205–214 (2009)
14.
Zurück zum Zitat Shabana, A.A.: Dynamics of Multibody Systems, 4th edn. Cambridge University Press, Cambridge (2013)CrossRefMATH Shabana, A.A.: Dynamics of Multibody Systems, 4th edn. Cambridge University Press, Cambridge (2013)CrossRefMATH
15.
Zurück zum Zitat Sayers, M.W., Han, D.: A generic multibody vehicle model for simulating handling and braking. Veh. Syst. Dyn. 25(S1), 599–613 (1996)CrossRef Sayers, M.W., Han, D.: A generic multibody vehicle model for simulating handling and braking. Veh. Syst. Dyn. 25(S1), 599–613 (1996)CrossRef
16.
Zurück zum Zitat Blundell, M., Harty, D.: The Multibody Systems Approach to Vehicle Dynamics. Elsevier, Amsterdam (2004) Blundell, M., Harty, D.: The Multibody Systems Approach to Vehicle Dynamics. Elsevier, Amsterdam (2004)
17.
Zurück zum Zitat Quatrano, A., De Simone, M.C., Rivera, Z.B., Guida, D.: Development and implementation of a control system for a retrofitted CNC machine by using arduino. FME Trans. 45(4), 578–584 (2017)CrossRef Quatrano, A., De Simone, M.C., Rivera, Z.B., Guida, D.: Development and implementation of a control system for a retrofitted CNC machine by using arduino. FME Trans. 45(4), 578–584 (2017)CrossRef
18.
Zurück zum Zitat Concilio, A., De Simone, M.C., Rivera, Z.B., Guida, D.: A new semi-active suspension system for racing vehicles. FME Trans. 45(4), 578–584 (2017)CrossRef Concilio, A., De Simone, M.C., Rivera, Z.B., Guida, D.: A new semi-active suspension system for racing vehicles. FME Trans. 45(4), 578–584 (2017)CrossRef
19.
Zurück zum Zitat Guida, D., Pappalardo, C.M.: Control design of an active suspension system for a quarter-car model with hysteresis. J. Vib. Eng. Technol. 3(3), 277–299 (2015) Guida, D., Pappalardo, C.M.: Control design of an active suspension system for a quarter-car model with hysteresis. J. Vib. Eng. Technol. 3(3), 277–299 (2015)
20.
Zurück zum Zitat Schutte, A.D., Udwadia, F.E.: New approach to the modeling of complex multibody dynamical systems. J. Appl. Mech. 78(2), 1–11 (2010) Schutte, A.D., Udwadia, F.E.: New approach to the modeling of complex multibody dynamical systems. J. Appl. Mech. 78(2), 1–11 (2010)
21.
Zurück zum Zitat Patel, M.D., Orzechowski, G., Tian, Q., Shabana, A.A.: A new multibody system approach for tire modeling using ANCF finite elements. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 230(1), 1–16 (2016) Patel, M.D., Orzechowski, G., Tian, Q., Shabana, A.A.: A new multibody system approach for tire modeling using ANCF finite elements. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 230(1), 1–16 (2016)
22.
Zurück zum Zitat Pappalardo, C.M., Patel, M.D., Tinsley, B., Shabana, A.A.: Contact force control in multibody pantograph/catenary systems. Proc. Inst. Mech. Eng. Part K J. Multibody Dyn. 230(4), 307–328 (2016) Pappalardo, C.M., Patel, M.D., Tinsley, B., Shabana, A.A.: Contact force control in multibody pantograph/catenary systems. Proc. Inst. Mech. Eng. Part K J. Multibody Dyn. 230(4), 307–328 (2016)
23.
Zurück zum Zitat Pappalardo, C.M.: A natural absolute coordinate formulation for the kinematic and dynamic analysis of rigid multibody systems. Nonlinear Dyn. 81(4), 1841–1869 (2015)MathSciNetCrossRefMATH Pappalardo, C.M.: A natural absolute coordinate formulation for the kinematic and dynamic analysis of rigid multibody systems. Nonlinear Dyn. 81(4), 1841–1869 (2015)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Pappalardo, C.M., Guida, D.: On the use of two-dimensional Euler parameters for the dynamic simulation of planar rigid multibody systems. Arch. Appl. Mech. 87(10), 1647–1665 (2017)CrossRef Pappalardo, C.M., Guida, D.: On the use of two-dimensional Euler parameters for the dynamic simulation of planar rigid multibody systems. Arch. Appl. Mech. 87(10), 1647–1665 (2017)CrossRef
25.
Zurück zum Zitat Oberpeilsteiner, S., Lauss, T., Nachbagauer, K., Steiner, W.: Optimal Input design for multibody systems by using an extended adjoint approach. Multibody Syst. Dyn. 40, 1–12 (2016)MathSciNetMATH Oberpeilsteiner, S., Lauss, T., Nachbagauer, K., Steiner, W.: Optimal Input design for multibody systems by using an extended adjoint approach. Multibody Syst. Dyn. 40, 1–12 (2016)MathSciNetMATH
26.
Zurück zum Zitat Lauss, T., Oberpeilsteiner, S., Steiner, W., Nachbagauer, K.: The discrete adjoint gradient computation for optimization problems in multibody dynamics. J. Comput. Nonlinear Dyn. 12(3), 031016 (2017)CrossRefMATH Lauss, T., Oberpeilsteiner, S., Steiner, W., Nachbagauer, K.: The discrete adjoint gradient computation for optimization problems in multibody dynamics. J. Comput. Nonlinear Dyn. 12(3), 031016 (2017)CrossRefMATH
27.
Zurück zum Zitat Nachbagauer, K., Oberpeilsteiner, S., Sherif, K., Steiner, W.: The use of the adjoint method for solving typical optimization problems in multibody dynamics. J. Comput. Nonlinear Dyn. 10(6), 061011 (2015)CrossRef Nachbagauer, K., Oberpeilsteiner, S., Sherif, K., Steiner, W.: The use of the adjoint method for solving typical optimization problems in multibody dynamics. J. Comput. Nonlinear Dyn. 10(6), 061011 (2015)CrossRef
28.
Zurück zum Zitat Vyasarayani, C.P., Uchida, T., McPhee, J.: Nonlinear parameter identification in multibody systems using homotopy continuation. J. Comput. Nonlinear Dyn. 7(1), 011012 (2012)CrossRef Vyasarayani, C.P., Uchida, T., McPhee, J.: Nonlinear parameter identification in multibody systems using homotopy continuation. J. Comput. Nonlinear Dyn. 7(1), 011012 (2012)CrossRef
29.
Zurück zum Zitat Vyasarayani, C.P., Uchida, T., McPhee, J.: Parameter identification in multibody systems using Lie series solutions and symbolic computation. J. Comput. Nonlinear Dyn. 6(4), 041011 (2011)CrossRef Vyasarayani, C.P., Uchida, T., McPhee, J.: Parameter identification in multibody systems using Lie series solutions and symbolic computation. J. Comput. Nonlinear Dyn. 6(4), 041011 (2011)CrossRef
30.
Zurück zum Zitat Ayusawa, K., Venture, G., Nakamura, Y.: Identifiability and identification of inertial parameters using the underactuated base-link dynamics for legged multibody systems. Int. J. Robot. Res. 33(3), 446–468 (2014)CrossRef Ayusawa, K., Venture, G., Nakamura, Y.: Identifiability and identification of inertial parameters using the underactuated base-link dynamics for legged multibody systems. Int. J. Robot. Res. 33(3), 446–468 (2014)CrossRef
31.
Zurück zum Zitat Verhaegen, M., Dewilde, P.: Subspace model identification part 1. The output-error state-space model identification class of algorithms. Int. J. Control 56(5), 1187–1210 (1992)CrossRefMATH Verhaegen, M., Dewilde, P.: Subspace model identification part 1. The output-error state-space model identification class of algorithms. Int. J. Control 56(5), 1187–1210 (1992)CrossRefMATH
32.
Zurück zum Zitat Verhaegen, M., Dewilde, P.: Subspace model identification part 2. Analysis of the elementary output-error state-space model identification algorithm. Int. J. Control 56(5), 1211–1241 (1992)CrossRefMATH Verhaegen, M., Dewilde, P.: Subspace model identification part 2. Analysis of the elementary output-error state-space model identification algorithm. Int. J. Control 56(5), 1211–1241 (1992)CrossRefMATH
33.
Zurück zum Zitat Verhaegen, M.: Subspace model identification part 3. Analysis of the ordinary output-error state-space model identification algorithm. Int. J. Control 58(3), 555–586 (1993)CrossRefMATH Verhaegen, M.: Subspace model identification part 3. Analysis of the ordinary output-error state-space model identification algorithm. Int. J. Control 58(3), 555–586 (1993)CrossRefMATH
34.
Zurück zum Zitat Kim, H.J., Yoo, W.S., Ok, J.K., Kang, D.W.: Parameter identification of damping models in multibody dynamic simulation of mechanical systems. Multibody Syst. Dyn. 22(4), 383–398 (2009)CrossRefMATH Kim, H.J., Yoo, W.S., Ok, J.K., Kang, D.W.: Parameter identification of damping models in multibody dynamic simulation of mechanical systems. Multibody Syst. Dyn. 22(4), 383–398 (2009)CrossRefMATH
35.
Zurück zum Zitat Serban, R., Freeman, J.S.: Identification and identifiability of unknown parameters in multibody dynamic systems. Multibody Syst. Dyn. 5(4), 335–350 (2001)CrossRefMATH Serban, R., Freeman, J.S.: Identification and identifiability of unknown parameters in multibody dynamic systems. Multibody Syst. Dyn. 5(4), 335–350 (2001)CrossRefMATH
36.
Zurück zum Zitat Sandu, C., Andersen, E.R., Southward, S.: Multibody dynamics modelling and system identification of a quarter-car test rig with McPherson strut suspension. Veh. Syst. Dyn. 49(1–2), 153–179 (2011)CrossRef Sandu, C., Andersen, E.R., Southward, S.: Multibody dynamics modelling and system identification of a quarter-car test rig with McPherson strut suspension. Veh. Syst. Dyn. 49(1–2), 153–179 (2011)CrossRef
37.
Zurück zum Zitat Van Overschee, P., De Moor, B.: N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica 30(1), 75–93 (1994)MathSciNetCrossRefMATH Van Overschee, P., De Moor, B.: N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica 30(1), 75–93 (1994)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Van Overschee, P., De Moor, B.L.: Subspace Identification for Linear Systems: Theory-Implementation-Applications. Springer, Berlin (2012)MATH Van Overschee, P., De Moor, B.L.: Subspace Identification for Linear Systems: Theory-Implementation-Applications. Springer, Berlin (2012)MATH
39.
Zurück zum Zitat Juang, J.N.: Applied System Identification. Prentice Hall, Upper Saddle River (1994)MATH Juang, J.N.: Applied System Identification. Prentice Hall, Upper Saddle River (1994)MATH
40.
Zurück zum Zitat Juang, J.N., Phan, M.Q.: Identification and Control of Mechanical Systems. Cambridge University Press, Cambridge (2001)CrossRef Juang, J.N., Phan, M.Q.: Identification and Control of Mechanical Systems. Cambridge University Press, Cambridge (2001)CrossRef
41.
Zurück zum Zitat ElMadany, M.M., Qarmoush, A.O.: Dynamic analysis of a slow-active suspension system based on a full car model. J. Vib. Control 17(1), 39–53 (2011)CrossRefMATH ElMadany, M.M., Qarmoush, A.O.: Dynamic analysis of a slow-active suspension system based on a full car model. J. Vib. Control 17(1), 39–53 (2011)CrossRefMATH
42.
Zurück zum Zitat Choi, S.B., Choi, Y.T., Park, D.W.: A sliding mode control of a full-car electrorheological suspension system via hardware in-the-loop simulation. J. Dyn. Syst. Meas. Control 122(1), 114–121 (2000)CrossRef Choi, S.B., Choi, Y.T., Park, D.W.: A sliding mode control of a full-car electrorheological suspension system via hardware in-the-loop simulation. J. Dyn. Syst. Meas. Control 122(1), 114–121 (2000)CrossRef
43.
Zurück zum Zitat Elbeheiry, E.M., Karnopp, D.C., Elaraby, M.E., Abdelraaouf, A.M.: Suboptimal control design of active and passive suspensions based on a full car model. Veh. Syst. Dyn. 26(3), 197–222 (1996)CrossRef Elbeheiry, E.M., Karnopp, D.C., Elaraby, M.E., Abdelraaouf, A.M.: Suboptimal control design of active and passive suspensions based on a full car model. Veh. Syst. Dyn. 26(3), 197–222 (1996)CrossRef
44.
Zurück zum Zitat Esmailzadeh, E., Fahimi, F.: Optimal adaptive active suspensions for a full car model. Veh. Syst. Dyn. 27(2), 89–107 (1997)CrossRef Esmailzadeh, E., Fahimi, F.: Optimal adaptive active suspensions for a full car model. Veh. Syst. Dyn. 27(2), 89–107 (1997)CrossRef
45.
Zurück zum Zitat Jahromi, A.F., Zabihollah, A.: Linear quadratic regulator and fuzzy controller application in full-car model of suspension system with magnetorheological shock absorber. In: IEEE/ASME international conference on mechatronics and embedded systems and applications (MESA), pp. 522–528 (2010) Jahromi, A.F., Zabihollah, A.: Linear quadratic regulator and fuzzy controller application in full-car model of suspension system with magnetorheological shock absorber. In: IEEE/ASME international conference on mechatronics and embedded systems and applications (MESA), pp. 522–528 (2010)
Metadaten
Titel
A time-domain system identification numerical procedure for obtaining linear dynamical models of multibody mechanical systems
verfasst von
Carmine M. Pappalardo
Domenico Guida
Publikationsdatum
04.04.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 8/2018
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-018-1374-x

Weitere Artikel der Ausgabe 8/2018

Archive of Applied Mechanics 8/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.