Skip to main content
Erschienen in: Computational Mechanics 6/2013

01.12.2013 | Original Paper

A meshfree weak-strong (MWS) form method for the unsteady magnetohydrodynamic (MHD) flow in pipe with arbitrary wall conductivity

verfasst von: Mehdi Dehghan, Rezvan Salehi

Erschienen in: Computational Mechanics | Ausgabe 6/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper a meshfree weak-strong (MWS) form method is considered to solve the coupled equations in velocity and magnetic field for the unsteady magnetohydrodynamic flow throFor this modified estimaFor this modified estimaFor this modified estimaugh a pipe of rectangular and circular sections having arbitrary conducting walls. Computations have been performed for various Hartman numbers and wall conductivity at different time levels. The MWS method is based on applying a meshfree collocation method in strong form for interior nodes and nodes on the essential boundaries and a meshless local Petrov–Galerkin method in weak form for nodes on the natural boundary of the domain. In this paper, we employ the moving least square reproducing kernel particle approximation to construct the shape functions. The numerical results for sample problems compare very well with steady state solution and other numerical methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alfvén H (1942) Existence of electromagnetic-hydrodynamic waves. Nature 150:405–406CrossRef Alfvén H (1942) Existence of electromagnetic-hydrodynamic waves. Nature 150:405–406CrossRef
2.
Zurück zum Zitat Atluri SN (2004) The meshless method (MLPG) for domain and BIE discretizations. Tech Science Press Atluri SN (2004) The meshless method (MLPG) for domain and BIE discretizations. Tech Science Press
3.
Zurück zum Zitat Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22:117–127MathSciNetCrossRefMATH Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22:117–127MathSciNetCrossRefMATH
4.
Zurück zum Zitat Atluri SN, Kim HG, Cho JY (1999) A critical assessment of the truly meshless local Petrov–Galerkin (MLPG) and local boundary integral equation (LBIE) methods. Comput Mech 24:348–372CrossRefMATH Atluri SN, Kim HG, Cho JY (1999) A critical assessment of the truly meshless local Petrov–Galerkin (MLPG) and local boundary integral equation (LBIE) methods. Comput Mech 24:348–372CrossRefMATH
5.
Zurück zum Zitat Atluri SN, Shen S (2002) The meshless local Petrov–Galerkin (MLPG) method: a simple and less-costly alternative to the finite element and boundary element methods. CMES: Comp Model Eng Sci 3:11–51MathSciNetMATH Atluri SN, Shen S (2002) The meshless local Petrov–Galerkin (MLPG) method: a simple and less-costly alternative to the finite element and boundary element methods. CMES: Comp Model Eng Sci 3:11–51MathSciNetMATH
6.
Zurück zum Zitat Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Meth Eng 37:29–56MathSciNet Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Meth Eng 37:29–56MathSciNet
8.
Zurück zum Zitat Bourantas GC, Skouras ED, Loukopoulos VC, Nikiforidis GC (2009) An accurate, stable and efficient domain-type meshless method for the solution of MHD flow problems. J Comput Phys 228:8135–8160MathSciNetCrossRefMATH Bourantas GC, Skouras ED, Loukopoulos VC, Nikiforidis GC (2009) An accurate, stable and efficient domain-type meshless method for the solution of MHD flow problems. J Comput Phys 228:8135–8160MathSciNetCrossRefMATH
9.
Zurück zum Zitat Bozkaya C, Tezer-Sezgin M (2007) Fundamental solution for coupled magnetohydrodynamic flow equations. J Comput Appl Math 203:125–144MathSciNetCrossRefMATH Bozkaya C, Tezer-Sezgin M (2007) Fundamental solution for coupled magnetohydrodynamic flow equations. J Comput Appl Math 203:125–144MathSciNetCrossRefMATH
11.
Zurück zum Zitat Dehghan M (2006) Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math Comput Simul 71:16–30MathSciNetCrossRefMATH Dehghan M (2006) Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math Comput Simul 71:16–30MathSciNetCrossRefMATH
12.
Zurück zum Zitat Dehghan M, Shokri A (2008) A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions. Math Comput Simul 79:700–715MathSciNetCrossRefMATH Dehghan M, Shokri A (2008) A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions. Math Comput Simul 79:700–715MathSciNetCrossRefMATH
13.
Zurück zum Zitat Dehghan M, Mirzaei D (2009) Meshless local boundary integral equation (LBIE) method for the unsteady magnetohydrodynamic (MHD) flow in rectangular and circular pipes. Comput Phys Commun 180:1458–1466MathSciNetCrossRef Dehghan M, Mirzaei D (2009) Meshless local boundary integral equation (LBIE) method for the unsteady magnetohydrodynamic (MHD) flow in rectangular and circular pipes. Comput Phys Commun 180:1458–1466MathSciNetCrossRef
14.
Zurück zum Zitat Dehghan M, Mirzaei D (2009) Meshless local Petrov–Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity. Appl Numer Math 59:1043–1058MathSciNetCrossRefMATH Dehghan M, Mirzaei D (2009) Meshless local Petrov–Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity. Appl Numer Math 59:1043–1058MathSciNetCrossRefMATH
15.
Zurück zum Zitat Dehghan M, Shokri A (2009) Numerical solution of the nonlinear Klein–Gordon equation using radial basis functions. J Comput Appl Math 230:400–410MathSciNetCrossRefMATH Dehghan M, Shokri A (2009) Numerical solution of the nonlinear Klein–Gordon equation using radial basis functions. J Comput Appl Math 230:400–410MathSciNetCrossRefMATH
16.
Zurück zum Zitat Dehghan M, Ghesmati A (2010) Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation. Eng Anal Bound Elem 34:324–336MathSciNetCrossRefMATH Dehghan M, Ghesmati A (2010) Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation. Eng Anal Bound Elem 34:324–336MathSciNetCrossRefMATH
17.
Zurück zum Zitat Dehghan M, Ghesmati A (2010) Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput Phys Commun 181:772–786MathSciNetCrossRefMATH Dehghan M, Ghesmati A (2010) Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput Phys Commun 181:772–786MathSciNetCrossRefMATH
18.
Zurück zum Zitat Dehghan M, Sabouri M (2012) A spectral element method for solving the Pennes bioheat transfer equation by using triangular and quadrilateral elements. Appl Math Model 36:6031–6049MathSciNetCrossRef Dehghan M, Sabouri M (2012) A spectral element method for solving the Pennes bioheat transfer equation by using triangular and quadrilateral elements. Appl Math Model 36:6031–6049MathSciNetCrossRef
19.
Zurück zum Zitat Dehghan M, Nikpour A (2013) The solitary wave solution of coupled Klein–Gordon–Zakharov equations via two different numerical methods. Comput Phys Commun 184:2145–2158 Dehghan M, Nikpour A (2013) The solitary wave solution of coupled Klein–Gordon–Zakharov equations via two different numerical methods. Comput Phys Commun 184:2145–2158
20.
Zurück zum Zitat Dragos L (1975) Magneto-fluid dynamics. Abacus Press, England Dragos L (1975) Magneto-fluid dynamics. Abacus Press, England
22.
23.
Zurück zum Zitat Gingold R, Monaghan J (1977) Smoothed particle hydrodynamics: theory and application to non spherical stars. Mon Not R Astr Soc 181:375–389MATH Gingold R, Monaghan J (1977) Smoothed particle hydrodynamics: theory and application to non spherical stars. Mon Not R Astr Soc 181:375–389MATH
25.
Zurück zum Zitat Gosz J, Liu WK (1996) Admissible approximations for essential boundary conditions in the reproducing kernel particle method. Comput Mech 19:120–135CrossRefMATH Gosz J, Liu WK (1996) Admissible approximations for essential boundary conditions in the reproducing kernel particle method. Comput Mech 19:120–135CrossRefMATH
26.
27.
Zurück zum Zitat Gupta SC, Singh B (1972) Unsteady MHD flow in a rectangular channel under transverse magnetic field. Indian J Pure Appl Math 3:1038–1047 Gupta SC, Singh B (1972) Unsteady MHD flow in a rectangular channel under transverse magnetic field. Indian J Pure Appl Math 3:1038–1047
28.
Zurück zum Zitat Hartmann J, Hg-Dynamics I (1937) Theory of the laminar flow of an electrically conducting liquid in a homogeneous magnetic field. K Dan Vidensk Selsk Mat Fys Medd 15:1–27 Hartmann J, Hg-Dynamics I (1937) Theory of the laminar flow of an electrically conducting liquid in a homogeneous magnetic field. K Dan Vidensk Selsk Mat Fys Medd 15:1–27
29.
Zurück zum Zitat Hartmann J, Lazarus F (1937) Experimental investigations on the flow of mercury in a homogeneous magnetic field. K Dan Vidensk Selsk Mat Fys Medd 15:1–45 Hartmann J, Lazarus F (1937) Experimental investigations on the flow of mercury in a homogeneous magnetic field. K Dan Vidensk Selsk Mat Fys Medd 15:1–45
30.
Zurück zum Zitat Hosseinzadeh H, Dehghan M, Mirzaei D (2013) The boundary element method for magneto-hydrodynamic (MHD) channel flows at high Hartmann numbers. Appl Math Model 37:2337–2351MathSciNetCrossRef Hosseinzadeh H, Dehghan M, Mirzaei D (2013) The boundary element method for magneto-hydrodynamic (MHD) channel flows at high Hartmann numbers. Appl Math Model 37:2337–2351MathSciNetCrossRef
31.
Zurück zum Zitat Huang Z (2009) Tailored finite point method for the interface problem. Netw Hetergenous Media 4:91–106 Huang Z (2009) Tailored finite point method for the interface problem. Netw Hetergenous Media 4:91–106
32.
Zurück zum Zitat Kwon KC, Park SH, Jiang BN, Youn SK (2003) The least-squares meshfree method for solving linear elastic problems. Comput Mech 30:196–211CrossRefMATH Kwon KC, Park SH, Jiang BN, Youn SK (2003) The least-squares meshfree method for solving linear elastic problems. Comput Mech 30:196–211CrossRefMATH
33.
Zurück zum Zitat Li S, Liu WK (1996) Moving least square reproducing kernel method part II: fourier analysis. Comput Meth Appl Mech Eng 139:159–194CrossRefMATH Li S, Liu WK (1996) Moving least square reproducing kernel method part II: fourier analysis. Comput Meth Appl Mech Eng 139:159–194CrossRefMATH
34.
Zurück zum Zitat Li S, Liu WK (2007) Meshfree particle methods. Springer, Berlin Li S, Liu WK (2007) Meshfree particle methods. Springer, Berlin
35.
36.
Zurück zum Zitat Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods for structural dynamics. Intern J Numer Meth Eng 38:1655–1679CrossRefMATH Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods for structural dynamics. Intern J Numer Meth Eng 38:1655–1679CrossRefMATH
37.
Zurück zum Zitat Liu WK, Li S, Belytschko T (1997) Moving least-square reproducing kernel methods (I) methodology and convergence. Comput Meth Appl Mech Eng 143:113–154MathSciNetCrossRefMATH Liu WK, Li S, Belytschko T (1997) Moving least-square reproducing kernel methods (I) methodology and convergence. Comput Meth Appl Mech Eng 143:113–154MathSciNetCrossRefMATH
38.
Zurück zum Zitat Liu WK, Uras RA, Chen Y (1997) Enrichment of the finite element method with the reproducing kernel particle method. J Appl Mech ASME 64:861–870CrossRefMATH Liu WK, Uras RA, Chen Y (1997) Enrichment of the finite element method with the reproducing kernel particle method. J Appl Mech ASME 64:861–870CrossRefMATH
39.
Zurück zum Zitat Liu GR, Gu YT (2002) A truly meshless method based on the strong-weak form. In: Liu GR (ed) Advances in meshfree and X-FEM methods. World Scientific, Singapore, pp 259–261 Liu GR, Gu YT (2002) A truly meshless method based on the strong-weak form. In: Liu GR (ed) Advances in meshfree and X-FEM methods. World Scientific, Singapore, pp 259–261
40.
Zurück zum Zitat Liu GR, Gu YT (2003) A meshfree method: meshfree weak-strong (MWS) form method for 2-D solids. Comput Mech 33:2–14CrossRefMATH Liu GR, Gu YT (2003) A meshfree method: meshfree weak-strong (MWS) form method for 2-D solids. Comput Mech 33:2–14CrossRefMATH
41.
Zurück zum Zitat Liu GR, Wu YL, Ding H (2004) Meshfree weak-strong (MWS) form method and its application to incompressible flow problems. Int J Numer Meth Fluids 46:1025–1047MathSciNetCrossRefMATH Liu GR, Wu YL, Ding H (2004) Meshfree weak-strong (MWS) form method and its application to incompressible flow problems. Int J Numer Meth Fluids 46:1025–1047MathSciNetCrossRefMATH
42.
Zurück zum Zitat Loukopoulos VC, Bourantas GC, Skouras ED, Nikiforidis GC (2011) Localized meshless point collocation method for time-dependent magnetohydrodynamics flow through pipes under a variety of wall conductivity conditions. Comput Mech 2:137– 159 Loukopoulos VC, Bourantas GC, Skouras ED, Nikiforidis GC (2011) Localized meshless point collocation method for time-dependent magnetohydrodynamics flow through pipes under a variety of wall conductivity conditions. Comput Mech 2:137– 159
43.
Zurück zum Zitat Melenk JM, Babuska I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139(1–4):289–314MathSciNetCrossRefMATH Melenk JM, Babuska I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139(1–4):289–314MathSciNetCrossRefMATH
44.
Zurück zum Zitat Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10(5):307–318CrossRefMATH Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10(5):307–318CrossRefMATH
45.
Zurück zum Zitat Oñate E, Idelsohn S, Zienkiewicz OC, Taylor RL, Sacco C (1996) A finite point method for analysis of fluid mechanics problems. Applications to convective transport and fluid flow. Int J Numer Methods Eng 39:3839–3866CrossRefMATH Oñate E, Idelsohn S, Zienkiewicz OC, Taylor RL, Sacco C (1996) A finite point method for analysis of fluid mechanics problems. Applications to convective transport and fluid flow. Int J Numer Methods Eng 39:3839–3866CrossRefMATH
46.
Zurück zum Zitat Salah NB, Soulaimani WG, Habashi WG (2001) A finite element method for magnetohydrodynamic. Comput Methods Appl Mech Eng 190:5867–5892CrossRefMATH Salah NB, Soulaimani WG, Habashi WG (2001) A finite element method for magnetohydrodynamic. Comput Methods Appl Mech Eng 190:5867–5892CrossRefMATH
47.
Zurück zum Zitat Salehi R, Dehghan M (2013) A moving least square reproducing polynomial meshless method. Appl Numer Math 69:34–58MathSciNetCrossRef Salehi R, Dehghan M (2013) A moving least square reproducing polynomial meshless method. Appl Numer Math 69:34–58MathSciNetCrossRef
48.
Zurück zum Zitat Shakeri F, Dehghan M (2011) A finite volume spectral element method for solving magnetohydrodynamic (MHD) equations. Appl Numer Math 61:1–23 Shakeri F, Dehghan M (2011) A finite volume spectral element method for solving magnetohydrodynamic (MHD) equations. Appl Numer Math 61:1–23
49.
Zurück zum Zitat Shercliff JA (1953) Steady motion of conducting fluids in pipes under transverse magnetic fields. Proc Camb Phil Soc 49:136– 144 Shercliff JA (1953) Steady motion of conducting fluids in pipes under transverse magnetic fields. Proc Camb Phil Soc 49:136– 144
50.
Zurück zum Zitat Sheu TWH, Lin RK (2004) Development of a convection-diffusion-reaction magnetohydrodynamic solver on nonstaggered grids. Int J Numer Meth Fluids 45:1209–1233MathSciNetCrossRefMATH Sheu TWH, Lin RK (2004) Development of a convection-diffusion-reaction magnetohydrodynamic solver on nonstaggered grids. Int J Numer Meth Fluids 45:1209–1233MathSciNetCrossRefMATH
51.
Zurück zum Zitat Shokri A, Dehghan M (2012) Meshless method using radial basis functions for the numerical solution of two-dimensional complex Ginzburg-Landau equation. Comput Model Eng Sci CMES 34:333–358MathSciNet Shokri A, Dehghan M (2012) Meshless method using radial basis functions for the numerical solution of two-dimensional complex Ginzburg-Landau equation. Comput Model Eng Sci CMES 34:333–358MathSciNet
52.
Zurück zum Zitat Singh B, Lal J (1982) Finite element method in MHD channel flow problems. Int J Numer Meth Eng 18:1091–1111CrossRef Singh B, Lal J (1982) Finite element method in MHD channel flow problems. Int J Numer Meth Eng 18:1091–1111CrossRef
53.
Zurück zum Zitat Singh B, Lal J (1984) Finite element method of MHD channel flow with arbitrary wall conductivity. J Math Phys Sci 18:501– 516 Singh B, Lal J (1984) Finite element method of MHD channel flow with arbitrary wall conductivity. J Math Phys Sci 18:501– 516
54.
Zurück zum Zitat Tatari M, Dehghan M (2009) On the solution of the non-local parabolic partial differential equations via radial basis functions. Appl Math Model 33:1729–1738MathSciNetCrossRefMATH Tatari M, Dehghan M (2009) On the solution of the non-local parabolic partial differential equations via radial basis functions. Appl Math Model 33:1729–1738MathSciNetCrossRefMATH
55.
Zurück zum Zitat Tatari M, Kamranian M, Dehghan M (2011) The finite point method for reaction-diffusion systems in developmental biology. Comput Model Eng Sci CMES 82:1–27MathSciNet Tatari M, Kamranian M, Dehghan M (2011) The finite point method for reaction-diffusion systems in developmental biology. Comput Model Eng Sci CMES 82:1–27MathSciNet
56.
Zurück zum Zitat Tezer-Sezgin M, Köksal S (1989) Finite elemen tmethod for solving MHD flow in a rectangular duct. Int J Numer Meth Eng 28:445–459CrossRefMATH Tezer-Sezgin M, Köksal S (1989) Finite elemen tmethod for solving MHD flow in a rectangular duct. Int J Numer Meth Eng 28:445–459CrossRefMATH
57.
Zurück zum Zitat Tezer-Sezgin M (1994) Boundary element methods solution of MHD flow in a rectangular duct. Int J Numer Meth Fluids 18:937–952CrossRefMATH Tezer-Sezgin M (1994) Boundary element methods solution of MHD flow in a rectangular duct. Int J Numer Meth Fluids 18:937–952CrossRefMATH
58.
Zurück zum Zitat Tezer-Sezgin M, Han Aydin S (2006) Solution of magnetohydrodynamic flow problems using the boundary element method. Eng Anal Bound Elem 30:411–418CrossRefMATH Tezer-Sezgin M, Han Aydin S (2006) Solution of magnetohydrodynamic flow problems using the boundary element method. Eng Anal Bound Elem 30:411–418CrossRefMATH
59.
Zurück zum Zitat Tezer-Sezgin M, Bozkaya C (2008) Boundary element method solution of magnetohydrodynamic flow in a rectangular duct with conducting walls parallel to applied magnetic field. Comput Mech 41:769–775CrossRefMATH Tezer-Sezgin M, Bozkaya C (2008) Boundary element method solution of magnetohydrodynamic flow in a rectangular duct with conducting walls parallel to applied magnetic field. Comput Mech 41:769–775CrossRefMATH
60.
Zurück zum Zitat Verardi SLL, Machado JM, Cardoso JR (2002) The element-free Galerkin method applied to the study of fully developed magnetohydrodynamic duct flows. IEEE Trans Magn 38:941–944CrossRef Verardi SLL, Machado JM, Cardoso JR (2002) The element-free Galerkin method applied to the study of fully developed magnetohydrodynamic duct flows. IEEE Trans Magn 38:941–944CrossRef
61.
Zurück zum Zitat Verardi SLL, Machado JM, Shiyou Y (2003) The application of interpolating MLS approximations to the analysis of MHD flows. Finite Elem Anal Des 39:1173–1187 Verardi SLL, Machado JM, Shiyou Y (2003) The application of interpolating MLS approximations to the analysis of MHD flows. Finite Elem Anal Des 39:1173–1187
62.
Zurück zum Zitat Wang S, Zhang H (2011) Partition of unity-based thermomechanical meshfree method for two-dimensional crack problems. Arch Appl Mech 81:1351–1363 Wang S, Zhang H (2011) Partition of unity-based thermomechanical meshfree method for two-dimensional crack problems. Arch Appl Mech 81:1351–1363
63.
Zurück zum Zitat Zahiri S, Daneshmand F, Akbari MH (2009) Using meshfree weak-strong form method for a 2-D heat transfer problem. ASME Conference Proceedings, pp 643–651 Zahiri S, Daneshmand F, Akbari MH (2009) Using meshfree weak-strong form method for a 2-D heat transfer problem. ASME Conference Proceedings, pp 643–651
Metadaten
Titel
A meshfree weak-strong (MWS) form method for the unsteady magnetohydrodynamic (MHD) flow in pipe with arbitrary wall conductivity
verfasst von
Mehdi Dehghan
Rezvan Salehi
Publikationsdatum
01.12.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 6/2013
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-013-0886-z

Weitere Artikel der Ausgabe 6/2013

Computational Mechanics 6/2013 Zur Ausgabe

Neuer Inhalt