Skip to main content
Erschienen in: Computational Mechanics 1/2014

01.01.2014 | Original Paper

Flapping and contact FSI computations with the fluid–solid interface-tracking/interface-capturing technique and mesh adaptivity

verfasst von: Thomas Wick

Erschienen in: Computational Mechanics | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The fluid–solid interface-tracking/interface-capturing technique (FSITICT) with arbitrary Lagrangian–Eulerian interface-tracking and Eulerian interface-capturing is applied to computations of fluid–structure interaction problems with flapping and contact. The two-dimensional model with contacting flaps is intended to represent a valve problem from biomechanics. The FSITICT is complemented with local mesh adaptivity, which significantly increases the performance of the interface-capturing component of the method. The test computations presented demonstrate how our approach works.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akin JE, Tezduyar T, Ungor M (2007) Computation of flow problems with the mixed interface-tracking/interface-capturing technique (MITICT). Comput Fluids 36:2–11CrossRefMATH Akin JE, Tezduyar T, Ungor M (2007) Computation of flow problems with the mixed interface-tracking/interface-capturing technique (MITICT). Comput Fluids 36:2–11CrossRefMATH
2.
Zurück zum Zitat Asterino M, Gerbeau JF, Pantz O, Traoré KF (2009) Fluid-structure interaction and multi-body contact: application to aortic valves. Comput Methods Appl Mech Eng 198:3603–3612CrossRef Asterino M, Gerbeau JF, Pantz O, Traoré KF (2009) Fluid-structure interaction and multi-body contact: application to aortic valves. Comput Methods Appl Mech Eng 198:3603–3612CrossRef
3.
Zurück zum Zitat Bangerth W, Heister T, Kanschat G (2012) Differential Equations Analysis Library. Bangerth W, Heister T, Kanschat G (2012) Differential Equations Analysis Library.
4.
Zurück zum Zitat Becker R, Rannacher R (1996) A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J Numer Math 4:237–264MATHMathSciNet Becker R, Rannacher R (1996) A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J Numer Math 4:237–264MATHMathSciNet
5.
Zurück zum Zitat Belytschko T, Parimi C, Moes N, Sukumar N, Usui S (2003) Structured extended finite element methods for solids defined by implicit surfaces. Int J Numer Methods Eng 56:609–635CrossRefMATH Belytschko T, Parimi C, Moes N, Sukumar N, Usui S (2003) Structured extended finite element methods for solids defined by implicit surfaces. Int J Numer Methods Eng 56:609–635CrossRefMATH
6.
Zurück zum Zitat Berenger J (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114. Berenger J (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114.
7.
Zurück zum Zitat Brooks A, Hughes T (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32(1–3):199–259CrossRefMATHMathSciNet Brooks A, Hughes T (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32(1–3):199–259CrossRefMATHMathSciNet
9.
Zurück zum Zitat Ciarlet PG (1984) Mathematical elasticity. Volume 1: three dimensional elasticity. North-Holland Ciarlet PG (1984) Mathematical elasticity. Volume 1: three dimensional elasticity. North-Holland
10.
Zurück zum Zitat Ciarlet PG (1987) The finite element method for elliptic problems, 2. pr. edn. North-Holland, Amsterdam [u.a.]. Ciarlet PG (1987) The finite element method for elliptic problems, 2. pr. edn. North-Holland, Amsterdam [u.a.].
11.
Zurück zum Zitat Cottet GH, Maitre E, Mileent T (2008) Eulerian formulation and level set models for incompressible fluid-structure interaction. Math Model Numer Anal 42:471–492CrossRefMATH Cottet GH, Maitre E, Mileent T (2008) Eulerian formulation and level set models for incompressible fluid-structure interaction. Math Model Numer Anal 42:471–492CrossRefMATH
12.
Zurück zum Zitat Cruchaga M, Celentano D, Tezduyar T (2007) A numerical model based on the mixed interface-tracking/ interface-capturing technique (MITICT). Int J Numer Methods Fluids 54:1021–1030CrossRefMATH Cruchaga M, Celentano D, Tezduyar T (2007) A numerical model based on the mixed interface-tracking/ interface-capturing technique (MITICT). Int J Numer Methods Fluids 54:1021–1030CrossRefMATH
13.
Zurück zum Zitat Donéa J, Fasoli-Stella P, Giuliani S (1977) Lagrangian and Eulerian finite element techniques for transient fluid-structure interaction problems. In: Trans. 4th Int. Conf. on Structural Mechanics in Reactor Technology, p. Paper B1/2 Donéa J, Fasoli-Stella P, Giuliani S (1977) Lagrangian and Eulerian finite element techniques for transient fluid-structure interaction problems. In: Trans. 4th Int. Conf. on Structural Mechanics in Reactor Technology, p. Paper B1/2
14.
Zurück zum Zitat Dunne T (2006) An Eulerian approach to fluid-structure interaction and goal-oriented mesh adaption. Int J Numer Methods Fluids 51:1017–1039CrossRefMATHMathSciNet Dunne T (2006) An Eulerian approach to fluid-structure interaction and goal-oriented mesh adaption. Int J Numer Methods Fluids 51:1017–1039CrossRefMATHMathSciNet
15.
Zurück zum Zitat Fernández F, Moubachir M (2005) A Newton method using exact Jacobians for solving fluid-structure coupling. Comput Struct 83:127–142CrossRef Fernández F, Moubachir M (2005) A Newton method using exact Jacobians for solving fluid-structure coupling. Comput Struct 83:127–142CrossRef
16.
Zurück zum Zitat Formaggia L, Gerbeau JF, Nobile F, Quarteroni A (2001) On the coupling of 3d and 1d Navier-Stokes equations for flow problems in compliant vessels. Comput Methods Appl Mech Eng 191:561–582CrossRefMATHMathSciNet Formaggia L, Gerbeau JF, Nobile F, Quarteroni A (2001) On the coupling of 3d and 1d Navier-Stokes equations for flow problems in compliant vessels. Comput Methods Appl Mech Eng 191:561–582CrossRefMATHMathSciNet
17.
Zurück zum Zitat Formaggia L, Quarteroni A, Veneziani A (2009) Cardiovascular mathematics: modeling and simulation of the circulatory system. Springer, Italia, MilanoCrossRef Formaggia L, Quarteroni A, Veneziani A (2009) Cardiovascular mathematics: modeling and simulation of the circulatory system. Springer, Italia, MilanoCrossRef
18.
Zurück zum Zitat Fung Y (1984) Biodynamics: circulation, first ed. edn. Springer, Berlin. Fung Y (1984) Biodynamics: circulation, first ed. edn. Springer, Berlin.
19.
Zurück zum Zitat Gazzola F, Squassina M (2006) Global solutions and finite time blow up for damped semilinear wave equations. Ann I H Poincaré 23:185–207CrossRefMATHMathSciNet Gazzola F, Squassina M (2006) Global solutions and finite time blow up for damped semilinear wave equations. Ann I H Poincaré 23:185–207CrossRefMATHMathSciNet
20.
Zurück zum Zitat Gil AJ, Carreno AA, Bonet J, Hassan O (2010) The immersed structural potential method for haemodynamic applications. J Comput Phys 229:8613–8641CrossRefMATHMathSciNet Gil AJ, Carreno AA, Bonet J, Hassan O (2010) The immersed structural potential method for haemodynamic applications. J Comput Phys 229:8613–8641CrossRefMATHMathSciNet
21.
Zurück zum Zitat Girault V, Raviart PA (1986) Finite element method for the Navier-Stokes equations. Number 5 in computer series in computational mathematics. Springer, Berlin. Girault V, Raviart PA (1986) Finite element method for the Navier-Stokes equations. Number 5 in computer series in computational mathematics. Springer, Berlin.
22.
Zurück zum Zitat He P, Qiao R (2011) A full-Eulerian solid level set method for simulation of fluid-structure interactions. Microfluid Nanofluid 11:557–567CrossRef He P, Qiao R (2011) A full-Eulerian solid level set method for simulation of fluid-structure interactions. Microfluid Nanofluid 11:557–567CrossRef
23.
Zurück zum Zitat Heywood JG, Rannacher R, Turek S (1996) Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int J Numer Methods Fluids 22:325–352CrossRefMATHMathSciNet Heywood JG, Rannacher R, Turek S (1996) Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int J Numer Methods Fluids 22:325–352CrossRefMATHMathSciNet
24.
Zurück zum Zitat Hirt C, Amsden A, Cook J (1974) An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J Comput Phys 14:227–253CrossRefMATH Hirt C, Amsden A, Cook J (1974) An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J Comput Phys 14:227–253CrossRefMATH
25.
Zurück zum Zitat Hughes T, Liu W, Zimmermann T (1981) Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349CrossRefMATHMathSciNet Hughes T, Liu W, Zimmermann T (1981) Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349CrossRefMATHMathSciNet
26.
Zurück zum Zitat Johnson A, Tezduyar T (1999) Advanced mesh generation and update methods for 3D flow simulations. Comp Mech 23:130–143CrossRefMATH Johnson A, Tezduyar T (1999) Advanced mesh generation and update methods for 3D flow simulations. Comp Mech 23:130–143CrossRefMATH
27.
Zurück zum Zitat Johnson A, Tezduyar T (2001) Methods for 3D computation of fluid-object interactions in spatially-periodic flows. Comput Methods Appl Mech Eng 190:3201–3221CrossRefMATH Johnson A, Tezduyar T (2001) Methods for 3D computation of fluid-object interactions in spatially-periodic flows. Comput Methods Appl Mech Eng 190:3201–3221CrossRefMATH
28.
Zurück zum Zitat Johnson AA, Tezduyar T (1996) 3D simulation of fluid-particle interactions with the number of particles reaching 100. Comput Methods Appl Mech Eng 145:301–321CrossRefMathSciNet Johnson AA, Tezduyar T (1996) 3D simulation of fluid-particle interactions with the number of particles reaching 100. Comput Methods Appl Mech Eng 145:301–321CrossRefMathSciNet
29.
Zurück zum Zitat Johnson AA, Tezduyar T (1996) Simulation of multiple spheres falling in a liquid-filled tube. Comput Methods Appl Mech Eng 134:351–373CrossRefMATHMathSciNet Johnson AA, Tezduyar T (1996) Simulation of multiple spheres falling in a liquid-filled tube. Comput Methods Appl Mech Eng 134:351–373CrossRefMATHMathSciNet
30.
Zurück zum Zitat Moes N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150CrossRefMATH Moes N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150CrossRefMATH
31.
Zurück zum Zitat Moghadam ME, Bazilevs Y, Hsia TY, Vignon-Clementel IE, Marsden AL (2011) A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput Mech 48:277–291CrossRefMATHMathSciNet Moghadam ME, Bazilevs Y, Hsia TY, Vignon-Clementel IE, Marsden AL (2011) A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput Mech 48:277–291CrossRefMATHMathSciNet
32.
Zurück zum Zitat Noh W (1964) A time-dependent two-space-dimensional coupled Eulerian-Lagrangian code, Methods Comput Phys, vol 3, 31st edn. Academic Press, New York Noh W (1964) A time-dependent two-space-dimensional coupled Eulerian-Lagrangian code, Methods Comput Phys, vol 3, 31st edn. Academic Press, New York
33.
Zurück zum Zitat Quarteroni A (2006) What mathematics can do for the simulation of blood circulation. Tech. rep, MOX Institute, Milano Quarteroni A (2006) What mathematics can do for the simulation of blood circulation. Tech. rep, MOX Institute, Milano
34.
Zurück zum Zitat Rannacher R (1986) On the stabilization of the Crank-Nicolson scheme for long time calculations. Preprint Rannacher R (1986) On the stabilization of the Crank-Nicolson scheme for long time calculations. Preprint
35.
Zurück zum Zitat Richter T (2012) A fully Eulerian formulation for fluid-structure interaction problems. J Comput Phys 233:227–240CrossRef Richter T (2012) A fully Eulerian formulation for fluid-structure interaction problems. J Comput Phys 233:227–240CrossRef
36.
Zurück zum Zitat Richter T, Wick T (2010) Finite elements for fluid-structure interaction in ALE and fully Eulerian coordinates. Comput Methods Appl Mech Eng 199:2633–2642CrossRefMATHMathSciNet Richter T, Wick T (2010) Finite elements for fluid-structure interaction in ALE and fully Eulerian coordinates. Comput Methods Appl Mech Eng 199:2633–2642CrossRefMATHMathSciNet
37.
Zurück zum Zitat Santos NDD, Gerbeau JF, Bourgat J (2008) A partitioned fluid-structure algorithm for elastic thin valves with contact. Comput Methods Appl Mech Eng 197(19–20):1750–1761CrossRefMATH Santos NDD, Gerbeau JF, Bourgat J (2008) A partitioned fluid-structure algorithm for elastic thin valves with contact. Comput Methods Appl Mech Eng 197(19–20):1750–1761CrossRefMATH
38.
Zurück zum Zitat Sathe S, Tezduyar T (2008) Modeling of fluid-structure interactions with the space-time finite elements: contact problems. Comput Mech 43:51–60CrossRefMATHMathSciNet Sathe S, Tezduyar T (2008) Modeling of fluid-structure interactions with the space-time finite elements: contact problems. Comput Mech 43:51–60CrossRefMATHMathSciNet
39.
Zurück zum Zitat Sugiyama K, Li S, Takeuchi S, Takagi S, Matsumato Y (2011) A full Eulerian finite difference approach for solving fluid-structure interacion. J Comput Phys 230:596–627CrossRefMATHMathSciNet Sugiyama K, Li S, Takeuchi S, Takagi S, Matsumato Y (2011) A full Eulerian finite difference approach for solving fluid-structure interacion. J Comput Phys 230:596–627CrossRefMATHMathSciNet
40.
Zurück zum Zitat Takagi S, Sugiyama K, Matsumato Y (2012) A review of full Eulerian mehtods for fluid structure interaction problems. J Appl Mech 79(1):010911CrossRef Takagi S, Sugiyama K, Matsumato Y (2012) A review of full Eulerian mehtods for fluid structure interaction problems. J Appl Mech 79(1):010911CrossRef
41.
Zurück zum Zitat Takizawa K, Tezduyar T (2012) Computational methods for parachute fluid-structure interactions. Arch Comput Methods Eng 19:125–169CrossRefMathSciNet Takizawa K, Tezduyar T (2012) Computational methods for parachute fluid-structure interactions. Arch Comput Methods Eng 19:125–169CrossRefMathSciNet
42.
Zurück zum Zitat Takizawa K, Wright S, Moorman C, Tezduyar T (2011) Fluid-structure interaction modeling of parachute clusters. Int J Numer Methods Fluids 65:286–307CrossRefMATH Takizawa K, Wright S, Moorman C, Tezduyar T (2011) Fluid-structure interaction modeling of parachute clusters. Int J Numer Methods Fluids 65:286–307CrossRefMATH
43.
Zurück zum Zitat Takizawa K, Fritze M, Montes D, Spielman T, Tezduyar T (2012) Fluid-structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity. Comput Mech 50:835–854CrossRefMATH Takizawa K, Fritze M, Montes D, Spielman T, Tezduyar T (2012) Fluid-structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity. Comput Mech 50:835–854CrossRefMATH
44.
Zurück zum Zitat Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar T (2012) Space-time techiques for computational aerodynamics modeling of flapping wings of an actual locust. Comput Mech 50:743–760CrossRefMATH Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar T (2012) Space-time techiques for computational aerodynamics modeling of flapping wings of an actual locust. Comput Mech 50:743–760CrossRefMATH
45.
Zurück zum Zitat Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar T (2012) Space-time techiques for the aerodynamics of flapping wings. J Appl Mech 79:010903CrossRef Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar T (2012) Space-time techiques for the aerodynamics of flapping wings. J Appl Mech 79:010903CrossRef
46.
Zurück zum Zitat Takizawa K, Kostov N, Puntel A, Henicke B, Tezduyar T (2012) Space-time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle. Comput Mech 50:761–778CrossRefMATH Takizawa K, Kostov N, Puntel A, Henicke B, Tezduyar T (2012) Space-time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle. Comput Mech 50:761–778CrossRefMATH
47.
Zurück zum Zitat Takizawa K, Spielman T, Tezduyar T (2011) Space-time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech 48:345–364CrossRefMATH Takizawa K, Spielman T, Tezduyar T (2011) Space-time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech 48:345–364CrossRefMATH
48.
49.
Zurück zum Zitat Tezduyar T (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8(2):83–130CrossRefMATHMathSciNet Tezduyar T (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8(2):83–130CrossRefMATHMathSciNet
50.
Zurück zum Zitat Tezduyar T (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575CrossRefMATHMathSciNet Tezduyar T (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575CrossRefMATHMathSciNet
51.
Zurück zum Zitat Tezduyar T (2006) Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces. Comput Methods Appl Mech Eng 195:2983–3000CrossRefMATHMathSciNet Tezduyar T (2006) Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces. Comput Methods Appl Mech Eng 195:2983–3000CrossRefMATHMathSciNet
52.
Zurück zum Zitat Tezduyar T, Aliabadi S (2000) EDICT for 3D computation of two-fluid interfaces. Comput Methods Appl Mech Eng 190:403–410CrossRefMATH Tezduyar T, Aliabadi S (2000) EDICT for 3D computation of two-fluid interfaces. Comput Methods Appl Mech Eng 190:403–410CrossRefMATH
53.
Zurück zum Zitat Tezduyar T, Sathe S (2007) Modeling of fluid-structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900CrossRefMATHMathSciNet Tezduyar T, Sathe S (2007) Modeling of fluid-structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900CrossRefMATHMathSciNet
54.
Zurück zum Zitat Tezduyar T, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces–the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94:339–351CrossRefMATHMathSciNet Tezduyar T, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces–the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94:339–351CrossRefMATHMathSciNet
55.
Zurück zum Zitat Tezduyar T, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94:353–371CrossRefMATHMathSciNet Tezduyar T, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94:353–371CrossRefMATHMathSciNet
56.
Zurück zum Zitat Tezduyar T, Aliabadi S, Behr M (1998) Enhanced-discretization interface-capturing technique (EDICT) for computation of unsteady flows with interfaces. Comput Methods Appl Mech Eng 155:235–248CrossRefMATH Tezduyar T, Aliabadi S, Behr M (1998) Enhanced-discretization interface-capturing technique (EDICT) for computation of unsteady flows with interfaces. Comput Methods Appl Mech Eng 155:235–248CrossRefMATH
57.
Zurück zum Zitat Tezduyar T, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid-structure interactions. Comput Methods Appl Mech Eng 195:2002–2027CrossRefMATHMathSciNet Tezduyar T, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid-structure interactions. Comput Methods Appl Mech Eng 195:2002–2027CrossRefMATHMathSciNet
58.
Zurück zum Zitat Tezduyar T, Sathe S, Stein K (2006) Solution techniques for the fully discretized equations in computation of fluid-structure interaction with space-time formulations. Comput Methods Appl Mech Eng 195(41–43):5743–5753CrossRefMATHMathSciNet Tezduyar T, Sathe S, Stein K (2006) Solution techniques for the fully discretized equations in computation of fluid-structure interaction with space-time formulations. Comput Methods Appl Mech Eng 195(41–43):5743–5753CrossRefMATHMathSciNet
59.
Zurück zum Zitat Tezduyar T, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space-time finite element computation of complex fluid-structure interaction. Int J Numer Meth Fluids 64:1201–1218CrossRefMATH Tezduyar T, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space-time finite element computation of complex fluid-structure interaction. Int J Numer Meth Fluids 64:1201–1218CrossRefMATH
60.
Zurück zum Zitat Wick T (2011) Adaptive finite element simulation of fluid-structure interaction with application to Heart-Valve Dynamics. Ph.D. thesis, University of Heidelberg Wick T (2011) Adaptive finite element simulation of fluid-structure interaction with application to Heart-Valve Dynamics. Ph.D. thesis, University of Heidelberg
61.
Zurück zum Zitat Wick T (2011) Fluid-structure interactions using different mesh motion techniques. Comput Struct 89(13–14):1456–1467CrossRef Wick T (2011) Fluid-structure interactions using different mesh motion techniques. Comput Struct 89(13–14):1456–1467CrossRef
62.
Zurück zum Zitat Wick T (2012) Coupling of fully Eulerian with arbitrary Lagrangian-Eulerian coordinates for fluid-structure interaction. Preprint Wick T (2012) Coupling of fully Eulerian with arbitrary Lagrangian-Eulerian coordinates for fluid-structure interaction. Preprint
64.
Zurück zum Zitat Wick T (2012) Goal-oriented mesh adaptivity for fluid-structure interaction with application to heart-valve settings. Arch Mech Eng 59(6):73–99MathSciNet Wick T (2012) Goal-oriented mesh adaptivity for fluid-structure interaction with application to heart-valve settings. Arch Mech Eng 59(6):73–99MathSciNet
66.
Zurück zum Zitat Wick T (2013) Solving monolithic fluid-structure interaction problems in arbitrary Lagrangian Eulerian coordinates with the deal.ii library. Arch Numerl Software 1, 1–19. http://www.archnumsoft.org Wick T (2013) Solving monolithic fluid-structure interaction problems in arbitrary Lagrangian Eulerian coordinates with the deal.ii library. Arch Numerl Software 1, 1–19. http://​www.​archnumsoft.​org
67.
Zurück zum Zitat Zhao H, Freund J, Moser R (2008) A fixed-mesh method for incompressible flow-structure systems with finite solid deformations. J Comput Phys 227(6):3114–3140CrossRefMATHMathSciNet Zhao H, Freund J, Moser R (2008) A fixed-mesh method for incompressible flow-structure systems with finite solid deformations. J Comput Phys 227(6):3114–3140CrossRefMATHMathSciNet
Metadaten
Titel
Flapping and contact FSI computations with the fluid–solid interface-tracking/interface-capturing technique and mesh adaptivity
verfasst von
Thomas Wick
Publikationsdatum
01.01.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 1/2014
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-013-0890-3

Weitere Artikel der Ausgabe 1/2014

Computational Mechanics 1/2014 Zur Ausgabe

Neuer Inhalt