Skip to main content
Erschienen in: Computational Mechanics 1/2014

01.01.2014 | Original Paper

Adaptive meshless local maximum-entropy finite element method for convection–diffusion problems

verfasst von: C. T. Wu, D. L. Young, H. K. Hong

Erschienen in: Computational Mechanics | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a meshless local maximum-entropy finite element method (LME-FEM) is proposed to solve 1D Poisson equation and steady state convection–diffusion problems at various Peclet numbers in both 1D and 2D. By using local maximum-entropy (LME) approximation scheme to construct the element shape functions in the formulation of finite element method (FEM), additional nodes can be introduced within element without any mesh refinement to increase the accuracy of numerical approximation of unknown function, which procedure is similar to conventional p-refinement but without increasing the element connectivity to avoid the high conditioning matrix. The resulted LME-FEM preserves several significant characteristics of conventional FEM such as Kronecker-delta property on element vertices, partition of unity of shape function and exact reproduction of constant and linear functions. Furthermore, according to the essential properties of LME approximation scheme, nodes can be introduced in an arbitrary way and the \(C^0\) continuity of the shape function along element edge is kept at the same time. No transition element is needed to connect elements of different orders. The property of arbitrary local refinement makes LME-FEM be a numerical method that can adaptively solve the numerical solutions of various problems where troublesome local mesh refinement is in general necessary to obtain reasonable solutions. Several numerical examples with dramatically varying solutions are presented to test the capability of the current method. The numerical results show that LME-FEM can obtain much better and stable solutions than conventional FEM with linear element.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Almeida RC, Silva RS (1997) A stable Petrov–Galerkin method for convection-dominated problems. Comput Methods Appl Mech Eng 140(34):291–304CrossRefMATHMathSciNet Almeida RC, Silva RS (1997) A stable Petrov–Galerkin method for convection-dominated problems. Comput Methods Appl Mech Eng 140(34):291–304CrossRefMATHMathSciNet
2.
Zurück zum Zitat Arroyo M, Ortiz M (2006) Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. Int J Numer Methods Eng 65(13):2167–2202CrossRefMATHMathSciNet Arroyo M, Ortiz M (2006) Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. Int J Numer Methods Eng 65(13):2167–2202CrossRefMATHMathSciNet
3.
Zurück zum Zitat Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22(2):117–127CrossRefMATHMathSciNet Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22(2):117–127CrossRefMATHMathSciNet
4.
Zurück zum Zitat Atluri SN, Kim HG, Cho JY (1999) A critical assessment of the truly meshless local Petrov–Galerkin (MLPG), and local boundary integral equation (LBIE) methods. Comput Mech 24(5):348–372CrossRefMATH Atluri SN, Kim HG, Cho JY (1999) A critical assessment of the truly meshless local Petrov–Galerkin (MLPG), and local boundary integral equation (LBIE) methods. Comput Mech 24(5):348–372CrossRefMATH
5.
Zurück zum Zitat Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256, times Cited: 2023 Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256, times Cited: 2023
6.
7.
Zurück zum Zitat Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139(1):3–47CrossRefMATH Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139(1):3–47CrossRefMATH
8.
Zurück zum Zitat Brooks AN, Hughes TJR (1982) Streamline upwind Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32(1–3):199–259CrossRefMATHMathSciNet Brooks AN, Hughes TJR (1982) Streamline upwind Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32(1–3):199–259CrossRefMATHMathSciNet
9.
Zurück zum Zitat Cyron CJ, Arroyo M, Ortiz M (2009) Smooth, second order, non-negative meshfree approximants selected by maximum entropy. Int J Numer Methods Eng 79(13):1605–1632CrossRefMATHMathSciNet Cyron CJ, Arroyo M, Ortiz M (2009) Smooth, second order, non-negative meshfree approximants selected by maximum entropy. Int J Numer Methods Eng 79(13):1605–1632CrossRefMATHMathSciNet
10.
Zurück zum Zitat Dunavant DA (1985) High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int J Numer Methods Eng 21(6):1129–1148CrossRefMATHMathSciNet Dunavant DA (1985) High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int J Numer Methods Eng 21(6):1129–1148CrossRefMATHMathSciNet
11.
Zurück zum Zitat Gu YT, Liu GR (2001) A coupled element free Galerkin/boundary element method for stress analysis of two-dimensional solids. Comput Methods Appl Mech Eng 190(34):4405–4419CrossRef Gu YT, Liu GR (2001) A coupled element free Galerkin/boundary element method for stress analysis of two-dimensional solids. Comput Methods Appl Mech Eng 190(34):4405–4419CrossRef
12.
Zurück zum Zitat Hegen D (1996) Element-free Galerkin methods in combination with finite element approaches. Comput Methods Appl Mech Eng 135(12):143–166CrossRefMATH Hegen D (1996) Element-free Galerkin methods in combination with finite element approaches. Comput Methods Appl Mech Eng 135(12):143–166CrossRefMATH
13.
Zurück zum Zitat Huerta A, Fernández-Méndez S (2000) Enrichment and coupling of the finite element and meshless methods. Int J Numer Methods Eng 48(11):1615–1636CrossRefMATH Huerta A, Fernández-Méndez S (2000) Enrichment and coupling of the finite element and meshless methods. Int J Numer Methods Eng 48(11):1615–1636CrossRefMATH
14.
Zurück zum Zitat Liu GR, Gu YT (2000) Meshless local Petrov–Galerkin (MLPG) method in combination with finite element and boundary element approaches. Comput Mech 26(6):536–546CrossRefMATHMathSciNet Liu GR, Gu YT (2000) Meshless local Petrov–Galerkin (MLPG) method in combination with finite element and boundary element approaches. Comput Mech 26(6):536–546CrossRefMATHMathSciNet
15.
16.
Zurück zum Zitat Rockafellar RT (1970) Convex analysis. Princeton University Press, PrincetonMATH Rockafellar RT (1970) Convex analysis. Princeton University Press, PrincetonMATH
17.
Zurück zum Zitat Rosolen A, Millan D, Arroyo M (2010) On the optimum support size in meshfree methods: a variational adaptivity approach with maximum-entropy approximants. Int J Numer Methods Eng 82(7):868–895MATHMathSciNet Rosolen A, Millan D, Arroyo M (2010) On the optimum support size in meshfree methods: a variational adaptivity approach with maximum-entropy approximants. Int J Numer Methods Eng 82(7):868–895MATHMathSciNet
18.
Zurück zum Zitat Shannon CE (2001) A mathematical theory of communication. SIGMOBILE Mob Comput Commun Rev 5(1):3–55CrossRef Shannon CE (2001) A mathematical theory of communication. SIGMOBILE Mob Comput Commun Rev 5(1):3–55CrossRef
19.
Zurück zum Zitat Sukumar N (2004) Construction of polygonal interpolants: a maximum entropy approach. Int J Numer Methods Eng 61(12):2159–2181CrossRefMATHMathSciNet Sukumar N (2004) Construction of polygonal interpolants: a maximum entropy approach. Int J Numer Methods Eng 61(12):2159–2181CrossRefMATHMathSciNet
20.
Zurück zum Zitat Sukumar N, Wright RW (2007) Overview and construction of meshfree basis functions: from moving least squares to entropy approximants. Int J Numer Methods Eng 70(2):181–205CrossRefMATHMathSciNet Sukumar N, Wright RW (2007) Overview and construction of meshfree basis functions: from moving least squares to entropy approximants. Int J Numer Methods Eng 70(2):181–205CrossRefMATHMathSciNet
21.
Zurück zum Zitat Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite Volume method, 2nd edn. Prentice Hall, Upper Saddle River Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite Volume method, 2nd edn. Prentice Hall, Upper Saddle River
22.
Zurück zum Zitat Wu CT, Hu W (2011) Meshfree-enriched simplex elements with strain smoothing for the finite element analysis of compressible and nearly incompressible solids. Comput Methods Appl Mech Eng 200(4546):2991–3010CrossRefMATHMathSciNet Wu CT, Hu W (2011) Meshfree-enriched simplex elements with strain smoothing for the finite element analysis of compressible and nearly incompressible solids. Comput Methods Appl Mech Eng 200(4546):2991–3010CrossRefMATHMathSciNet
23.
Zurück zum Zitat Wu CT, Park CK, Chen JS (2011a) A generalized approximation for the meshfree analysis of solids. Int J Numer Methods Eng 85(6):693–722CrossRefMATH Wu CT, Park CK, Chen JS (2011a) A generalized approximation for the meshfree analysis of solids. Int J Numer Methods Eng 85(6):693–722CrossRefMATH
24.
Zurück zum Zitat Wu CT, Yang FL, Young DL (2011b) Application of the method of fundamental solutions and the generalized Lagally theorem to the interaction of solid body and external singularities in an inviscid fluid. Comput Mater Continua 23(2): 135 –154 Wu CT, Yang FL, Young DL (2011b) Application of the method of fundamental solutions and the generalized Lagally theorem to the interaction of solid body and external singularities in an inviscid fluid. Comput Mater Continua 23(2): 135 –154
25.
Zurück zum Zitat Wu CT, Hu W, Chen JS (2012) A meshfree-enriched finite element method for compressible and near-incompressible elasticity. Int J Numer Methods Eng 90(7):882–914 Wu CT, Hu W, Chen JS (2012) A meshfree-enriched finite element method for compressible and near-incompressible elasticity. Int J Numer Methods Eng 90(7):882–914
26.
Zurück zum Zitat Young DL, Jane SC, Lin CY, Chiu CL, Chen KC (2004) Solutions of 2D and 3D Stokes laws using multiquadrics method. Eng Anal Bound Elem 28(10):1233–1243CrossRefMATH Young DL, Jane SC, Lin CY, Chiu CL, Chen KC (2004) Solutions of 2D and 3D Stokes laws using multiquadrics method. Eng Anal Bound Elem 28(10):1233–1243CrossRefMATH
27.
Zurück zum Zitat Zienkiewicz OC, De SR, Gago JP, Kelly DW (1983) The hierarchical concept in finite element analysis. Comput Struct 16(14):53–65CrossRefMATH Zienkiewicz OC, De SR, Gago JP, Kelly DW (1983) The hierarchical concept in finite element analysis. Comput Struct 16(14):53–65CrossRefMATH
28.
Zurück zum Zitat Zienkiewicz OC, Taylor RL, Zhu J (2005) The finite element method: its basis and fundamentals, 6th edn. Butterworth-Heinemann, Oxford Zienkiewicz OC, Taylor RL, Zhu J (2005) The finite element method: its basis and fundamentals, 6th edn. Butterworth-Heinemann, Oxford
Metadaten
Titel
Adaptive meshless local maximum-entropy finite element method for convection–diffusion problems
verfasst von
C. T. Wu
D. L. Young
H. K. Hong
Publikationsdatum
01.01.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 1/2014
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-013-0901-4

Weitere Artikel der Ausgabe 1/2014

Computational Mechanics 1/2014 Zur Ausgabe

Neuer Inhalt