Skip to main content
Erschienen in: Computational Mechanics 6/2015

01.12.2015 | Original Paper

Extension of non-linear beam models with deformable cross sections

verfasst von: I. Sokolov, S. Krylov, I. Harari

Erschienen in: Computational Mechanics | Ausgabe 6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Geometrically exact beam theory is extended to allow distortion of the cross section. We present an appropriate set of cross-section basis functions and provide physical insight to the cross-sectional distortion from linear elastostatics. The beam formulation in terms of material (back-rotated) beam internal force resultants and work-conjugate kinematic quantities emerges naturally from the material description of virtual work of constrained finite elasticity. The inclusion of cross-sectional deformation allows straightforward application of three-dimensional constitutive laws in the beam formulation. Beam counterparts of applied loads are expressed in terms of the original three-dimensional data. Special attention is paid to the treatment of the applied stress, keeping in mind applications such as hydrogel actuators under environmental stimuli or devices made of electroactive polymers. Numerical comparisons show the ability of the beam model to reproduce finite elasticity results with good efficiency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The term geometrically exact with reference to shells was introduced by [59] and used for the first time for the beams by [65].
 
2
The deformation map in this case is constrained to have a form \(\varvec{x} = {\varvec{\varphi }} (\varvec{X}) = {\varvec{r}} + \hat{\varvec{z}} \big ( \{\varvec{e}_I\}, \varvec{d}, \varvec{l} \big ) \) where \(\hat{\varvec{z}}\) is a prescribed function. Richer theories can be developed using the extension to a high-order form, see [3].
 
3
Note the relation \(\left( \varvec{a} \otimes \varvec{b} \right) \varvec{c} = \left( \varvec{b} \cdot \varvec{c} \right) \varvec{a}\).
 
4
Describing beam measures, we consider two representations of vectors and tensors, designated as forward-rotated (spatial) and back-rotated (material) forms. These forms relate in such a way that components of the forward-rotated form measured in the reference frame \(\{\varvec{E}_I\}\) have the same components as the back-rotated form measured in the current frame \(\{\varvec{e}_{I}\}\).
 
5
For instance, in the finite element model all nodes with the same reference \(X_3\)-coordinate (nodes that lying in the ”beam“ cross-section plane) are constrained to the rigid body motion of a corresponding single node with \(X_1=X_2=0\) coordinate. Thus all these nodes move as a rigid ”beam“ section.
 
Literatur
1.
Zurück zum Zitat Altenbach J, Altenbach H, Matzdorf V (1994) A generalized Vlasov theory for thin-walled composite beam structures. Mech Compos Mater 30(1):43–54CrossRef Altenbach J, Altenbach H, Matzdorf V (1994) A generalized Vlasov theory for thin-walled composite beam structures. Mech Compos Mater 30(1):43–54CrossRef
2.
Zurück zum Zitat Antman S (1974) Kirchhoff’s problem for nonlinearly elastic rods. Q Appl Math 32(3):221–240MATHMathSciNet Antman S (1974) Kirchhoff’s problem for nonlinearly elastic rods. Q Appl Math 32(3):221–240MATHMathSciNet
3.
Zurück zum Zitat Antman S (1991) Nonlinear problems of elasticity, applied mathematical sciences, vol 107, 2nd edn. Springer, New York Antman S (1991) Nonlinear problems of elasticity, applied mathematical sciences, vol 107, 2nd edn. Springer, New York
4.
6.
Zurück zum Zitat Auricchio F, Carotenuto P, Reali A (2008) On the geometrically exact beam model: a consistent, effective and simple derivation from three-dimensional finite-elasticity. Int J Solids Struct 45(17):4766–4781MATHCrossRef Auricchio F, Carotenuto P, Reali A (2008) On the geometrically exact beam model: a consistent, effective and simple derivation from three-dimensional finite-elasticity. Int J Solids Struct 45(17):4766–4781MATHCrossRef
7.
Zurück zum Zitat Bar-Cohen Y (2001) Electroactive polymer (EAP) actuators as artificial muscles—reality, potential and challenges, vol PM98, 2nd edn. SPIE Press, Bellingham, WA Bar-Cohen Y (2001) Electroactive polymer (EAP) actuators as artificial muscles—reality, potential and challenges, vol PM98, 2nd edn. SPIE Press, Bellingham, WA
8.
Zurück zum Zitat Butz A, Klinkel S, Wagner W (2008) A geometrically and materially non-linear piezoelectric three-dimensional-beam finite element formulation including warping effects. Int J Numer Methods Eng 76(5):601–635MATHMathSciNetCrossRef Butz A, Klinkel S, Wagner W (2008) A geometrically and materially non-linear piezoelectric three-dimensional-beam finite element formulation including warping effects. Int J Numer Methods Eng 76(5):601–635MATHMathSciNetCrossRef
9.
Zurück zum Zitat Cardona A, Geradin M (1988) A beam finite-element non-linear theory with finite rotations. Int J Numer Methods Eng 26(11):2403–2438MATHMathSciNetCrossRef Cardona A, Geradin M (1988) A beam finite-element non-linear theory with finite rotations. Int J Numer Methods Eng 26(11):2403–2438MATHMathSciNetCrossRef
10.
Zurück zum Zitat Ciarlet P (1988) Mathematical elasticity, volume I: three-dimensional elasticity. North-Holland, AmsterdamMATH Ciarlet P (1988) Mathematical elasticity, volume I: three-dimensional elasticity. North-Holland, AmsterdamMATH
11.
Zurück zum Zitat Cohen H (1966) A non-linear theory of elastic directed curves. Int J Eng Sci 4(5):511–524CrossRef Cohen H (1966) A non-linear theory of elastic directed curves. Int J Eng Sci 4(5):511–524CrossRef
12.
Zurück zum Zitat Cosserat E, Cosserat F (1909) Théorie des Corps déformables. Traite de Physique, Paris Cosserat E, Cosserat F (1909) Théorie des Corps déformables. Traite de Physique, Paris
13.
Zurück zum Zitat Dabrowski R (1970) Curved thin-walled girders: theory and analysis. Cement and Concrete Association, London Dabrowski R (1970) Curved thin-walled girders: theory and analysis. Cement and Concrete Association, London
14.
Zurück zum Zitat Dasambiagio E, Pimenta P, Campello E (2009) A finite strain rod model that incorporates general cross section deformation and its implementation by the Finite Element Method. In: da Costa Mattos HS, Alves M (eds.) Solid Mechanics in Brazil 2009, ABCM symposium series in solid mechanics, vol. 2, pp. 145–168. ABCM, Rio de Janeiro Dasambiagio E, Pimenta P, Campello E (2009) A finite strain rod model that incorporates general cross section deformation and its implementation by the Finite Element Method. In: da Costa Mattos HS, Alves M (eds.) Solid Mechanics in Brazil 2009, ABCM symposium series in solid mechanics, vol. 2, pp. 145–168. ABCM, Rio de Janeiro
15.
Zurück zum Zitat Davies J, Leach P (1994) First-order generalised beam theory. J Constr Steel Res 31(2–3):187–220CrossRef Davies J, Leach P (1994) First-order generalised beam theory. J Constr Steel Res 31(2–3):187–220CrossRef
16.
Zurück zum Zitat Davies J, Leach P (1994) Second-order generalised beam theory. J Constr Steel Res 31(2–3):221–241CrossRef Davies J, Leach P (1994) Second-order generalised beam theory. J Constr Steel Res 31(2–3):221–241CrossRef
17.
Zurück zum Zitat Ericksen J, Truesdell C (1957/58) Exact theory of stress and strain in rods and shells. Arch Ration Mech Anal 1(1): 295–323 Ericksen J, Truesdell C (1957/58) Exact theory of stress and strain in rods and shells. Arch Ration Mech Anal 1(1): 295–323
18.
Zurück zum Zitat Gonçalves R (2012) A geometrically exact approach to lateral-torsional buckling of thin-walled beams with deformable cross-section. Comput Struct 106–107:9–19CrossRef Gonçalves R (2012) A geometrically exact approach to lateral-torsional buckling of thin-walled beams with deformable cross-section. Comput Struct 106–107:9–19CrossRef
19.
Zurück zum Zitat Gonçalves R, Ritto-Corrêa M, Camotim D (2010) A large displacement and finite rotation thin-walled beam formulation including cross-section deformation. Comput Methods Appl Mech Eng 199(23–24):1627–1643MATHCrossRef Gonçalves R, Ritto-Corrêa M, Camotim D (2010) A large displacement and finite rotation thin-walled beam formulation including cross-section deformation. Comput Methods Appl Mech Eng 199(23–24):1627–1643MATHCrossRef
20.
Zurück zum Zitat Gonçalves R, Ritto-Corrêa M, Camotim D (2010) A new approach to the calculation of cross-section deformation modes in the framework of generalized beam theory. Comput Mech 46(5):759–781MATHMathSciNetCrossRef Gonçalves R, Ritto-Corrêa M, Camotim D (2010) A new approach to the calculation of cross-section deformation modes in the framework of generalized beam theory. Comput Mech 46(5):759–781MATHMathSciNetCrossRef
21.
Zurück zum Zitat Gonçalves R, Ritto-Corrêa M, Camotim D (2011) Incorporation of wall finite relative rotations in a geometrically exact thin-walled beam element. Comput Mech 48(2):229–244MATHCrossRef Gonçalves R, Ritto-Corrêa M, Camotim D (2011) Incorporation of wall finite relative rotations in a geometrically exact thin-walled beam element. Comput Mech 48(2):229–244MATHCrossRef
22.
Zurück zum Zitat Green A, Laws N (1966) General theory of rods. Proc R Soc London Ser A 293(1433):145–155CrossRef Green A, Laws N (1966) General theory of rods. Proc R Soc London Ser A 293(1433):145–155CrossRef
23.
Zurück zum Zitat Green A, Laws N (1973) Remarks on the theory of rods. J Elast 3(3):179–184CrossRef Green A, Laws N (1973) Remarks on the theory of rods. J Elast 3(3):179–184CrossRef
24.
Zurück zum Zitat Green A, Laws N, Naghdi P (1968) Rods, plates and shells. Math Proc Camb Philos Soc 64(3):895–913MATHCrossRef Green A, Laws N, Naghdi P (1968) Rods, plates and shells. Math Proc Camb Philos Soc 64(3):895–913MATHCrossRef
25.
Zurück zum Zitat Gruttmann F, Sauer R, Wagner W (1998) A geometrical nonlinear eccentric 3D-beam element with arbitrary cross-sections. Comput Methods Appl Mech Eng 160(3–4):383–400MATHMathSciNetCrossRef Gruttmann F, Sauer R, Wagner W (1998) A geometrical nonlinear eccentric 3D-beam element with arbitrary cross-sections. Comput Methods Appl Mech Eng 160(3–4):383–400MATHMathSciNetCrossRef
26.
Zurück zum Zitat Gruttmann F, Sauer R, Wagner W (1999) Shear stresses in prismatic beams with arbitrary cross-sections. Int J Numer Methods Eng 45(7):865–889MATHCrossRef Gruttmann F, Sauer R, Wagner W (1999) Shear stresses in prismatic beams with arbitrary cross-sections. Int J Numer Methods Eng 45(7):865–889MATHCrossRef
27.
Zurück zum Zitat Gruttmann F, Sauer R, Wagner W (2000) Theory and numerics of three-dimensional beams with elastoplastic material behaviour. Int J Numer Methods Eng 48(12):1675–1702MATHCrossRef Gruttmann F, Sauer R, Wagner W (2000) Theory and numerics of three-dimensional beams with elastoplastic material behaviour. Int J Numer Methods Eng 48(12):1675–1702MATHCrossRef
28.
29.
Zurück zum Zitat Ibrahimbegovic A (1995) On finite element implementation of geometrically nonlinear Reissner’s beam theory: three-dimensional curved beam elements. Comput Methods Appl Mech Eng 122(1–2):11–26MATHCrossRef Ibrahimbegovic A (1995) On finite element implementation of geometrically nonlinear Reissner’s beam theory: three-dimensional curved beam elements. Comput Methods Appl Mech Eng 122(1–2):11–26MATHCrossRef
30.
31.
Zurück zum Zitat Ibrahimbegovic A, Frey F, Kozar I (1995) Computational aspects of vector-like parameterization of three-dimensional finite rotations. Int J Numer Methods Eng 38(21):3653–3673MATHMathSciNetCrossRef Ibrahimbegovic A, Frey F, Kozar I (1995) Computational aspects of vector-like parameterization of three-dimensional finite rotations. Int J Numer Methods Eng 38(21):3653–3673MATHMathSciNetCrossRef
32.
Zurück zum Zitat Ibrahimbegovic A, Mikdad M (1998) Finite rotations in dynamics of beams and implicit time-stepping schemes. Int J Numer Methods Eng 41(5):781–814MATHCrossRef Ibrahimbegovic A, Mikdad M (1998) Finite rotations in dynamics of beams and implicit time-stepping schemes. Int J Numer Methods Eng 41(5):781–814MATHCrossRef
33.
Zurück zum Zitat Ibrahimbegovic A, Taylor R (2002) On the role of frame-invariance in structural mechanics models at finite rotations. Comput Methods Appl Mech Eng 191(45):5159–5176MATHMathSciNetCrossRef Ibrahimbegovic A, Taylor R (2002) On the role of frame-invariance in structural mechanics models at finite rotations. Comput Methods Appl Mech Eng 191(45):5159–5176MATHMathSciNetCrossRef
34.
Zurück zum Zitat Iura M, Atluri S (1988) Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams. Comput Struct 29(5):875–889MATHCrossRef Iura M, Atluri S (1988) Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams. Comput Struct 29(5):875–889MATHCrossRef
35.
Zurück zum Zitat Iura M, Atluri S (1989) On a consistent theory, and variational formulation of finitely stretched and rotated three-dimensional space-curved beams. Comput Mech 4(2):73–88CrossRef Iura M, Atluri S (1989) On a consistent theory, and variational formulation of finitely stretched and rotated three-dimensional space-curved beams. Comput Mech 4(2):73–88CrossRef
36.
Zurück zum Zitat Jelenić G, Saje M (1995) A kinematically exact space finite strain beam model—finite element formulation by generalized virtual work principle. Comput Methods Appl Mech Eng 120(1–2):131–161MATHCrossRef Jelenić G, Saje M (1995) A kinematically exact space finite strain beam model—finite element formulation by generalized virtual work principle. Comput Methods Appl Mech Eng 120(1–2):131–161MATHCrossRef
37.
Zurück zum Zitat Kapania R, Li J (2003) On a geometrically exact curved/twisted beam theory under rigid cross-section assumption. Comput Mech 30(1):4–27 Kapania R, Li J (2003) On a geometrically exact curved/twisted beam theory under rigid cross-section assumption. Comput Mech 30(1):4–27
38.
Zurück zum Zitat Kirchhoff G (1852) Über die Gleichungen des Gleichgewichts eines elastischen Körpers bei nicht unendlich kleinen Verschiebungen seiner Theile. Sitzgsber Akad Wiss Wien 9:762–773 Kirchhoff G (1852) Über die Gleichungen des Gleichgewichts eines elastischen Körpers bei nicht unendlich kleinen Verschiebungen seiner Theile. Sitzgsber Akad Wiss Wien 9:762–773
39.
Zurück zum Zitat Klinkel S, Govindjee S (2003) Anisotropic bending-torsion coupling for warping in a non-linear beam. Comput Mech 31(1):78–87MATHCrossRef Klinkel S, Govindjee S (2003) Anisotropic bending-torsion coupling for warping in a non-linear beam. Comput Mech 31(1):78–87MATHCrossRef
40.
Zurück zum Zitat Mäkinen J (2007) Total Lagrangian Reissner’s geometrically exact beam element without singularities. Int J Numer Methods Eng 70(9):1009–1048MATHCrossRef Mäkinen J (2007) Total Lagrangian Reissner’s geometrically exact beam element without singularities. Int J Numer Methods Eng 70(9):1009–1048MATHCrossRef
42.
Zurück zum Zitat Mäkinen J, Kouhia R, Fedoroff A, Marjamäki H (2012) Direct computation of critical equilibrium states for spatial beams and frames. Int J Numer Methods Eng 89(2):135–153MATHCrossRef Mäkinen J, Kouhia R, Fedoroff A, Marjamäki H (2012) Direct computation of critical equilibrium states for spatial beams and frames. Int J Numer Methods Eng 89(2):135–153MATHCrossRef
43.
Zurück zum Zitat Maleki T, Chitnis G, Ziaie B (2011) A batch-fabricated laser-micromachined pdms actuator with stamped carbon grease electrodes. J Micromech Microeng 21(2): Maleki T, Chitnis G, Ziaie B (2011) A batch-fabricated laser-micromachined pdms actuator with stamped carbon grease electrodes. J Micromech Microeng 21(2):
44.
Zurück zum Zitat Marsden J, Ratiu T (1999) Introduction to mechanics and symmetry: a basic exposition of classical mechanical systems, 2nd edn. Springer, New YorkMATHCrossRef Marsden J, Ratiu T (1999) Introduction to mechanics and symmetry: a basic exposition of classical mechanical systems, 2nd edn. Springer, New YorkMATHCrossRef
45.
Zurück zum Zitat Mata P, Oller S, Barbat A (2007) Static analysis of beam structures under nonlinear geometric and constitutive behavior. Comput Methods Appl Mech Eng 196(45–48):4458–4478MATHMathSciNetCrossRef Mata P, Oller S, Barbat A (2007) Static analysis of beam structures under nonlinear geometric and constitutive behavior. Comput Methods Appl Mech Eng 196(45–48):4458–4478MATHMathSciNetCrossRef
46.
47.
Zurück zum Zitat Papaioannou I, Fragiadakis M, Papadrakakis M (2005) Inelastic analysis of framed structures using the fiber approach. In: GRACM 05, Proceedings of the 5th international congress computational mechanics, pp 231–238. ASCM, Limassol Papaioannou I, Fragiadakis M, Papadrakakis M (2005) Inelastic analysis of framed structures using the fiber approach. In: GRACM 05, Proceedings of the 5th international congress computational mechanics, pp 231–238. ASCM, Limassol
48.
Zurück zum Zitat Pimenta P, Campello E (2003) A fully nonlinear multi-parameter rod model incorporating general cross-sectional in-plane changes and out-of-plane warping. Latin Am J Solids Struct 1(1):119–140 Pimenta P, Campello E (2003) A fully nonlinear multi-parameter rod model incorporating general cross-sectional in-plane changes and out-of-plane warping. Latin Am J Solids Struct 1(1):119–140
49.
Zurück zum Zitat Reissner E (1972) On one-dimensional finite-strain beam theory: the plane problem. J Appl Math Phys 23(5):795–804MATHCrossRef Reissner E (1972) On one-dimensional finite-strain beam theory: the plane problem. J Appl Math Phys 23(5):795–804MATHCrossRef
50.
Zurück zum Zitat Reissner E (1973) On one-dimensional large-displacement finite-strain beam theory. Stud Appl Math 52(2):87–95MATHCrossRef Reissner E (1973) On one-dimensional large-displacement finite-strain beam theory. Stud Appl Math 52(2):87–95MATHCrossRef
51.
Zurück zum Zitat Reissner E (1981) On finite deformations of space-curved beams. J Appl Math Phys 32(6):734–744MATHCrossRef Reissner E (1981) On finite deformations of space-curved beams. J Appl Math Phys 32(6):734–744MATHCrossRef
52.
Zurück zum Zitat Rhim J, Lee S (1998) A vectorial approach to computational modelling of beams undergoing finite rotations. Int J Numer Methods Eng 41(3):527–540MATHCrossRef Rhim J, Lee S (1998) A vectorial approach to computational modelling of beams undergoing finite rotations. Int J Numer Methods Eng 41(3):527–540MATHCrossRef
53.
Zurück zum Zitat Ritto-Corrêa M, Camotim D (2002) On the differentiation of the rodrigues formula and its significance for the vector-like parameterization of reissnersimo beam theory. Int J Numer Methods Eng 55(9):1005–1032 Ritto-Corrêa M, Camotim D (2002) On the differentiation of the rodrigues formula and its significance for the vector-like parameterization of reissnersimo beam theory. Int J Numer Methods Eng 55(9):1005–1032
54.
Zurück zum Zitat Saje M (1991) Finite element formulation of finite planar deformation of curved elastic beams. Comput Struct 39(3–4):327–337MATHCrossRef Saje M (1991) Finite element formulation of finite planar deformation of curved elastic beams. Comput Struct 39(3–4):327–337MATHCrossRef
55.
Zurück zum Zitat Saje M, Turk G, Kalagasidu A, Vratanar B (1998) A kinematically exact finite element formulation of elastic-plastic curved beams. Comput Struct 67(4):197–214MATHCrossRef Saje M, Turk G, Kalagasidu A, Vratanar B (1998) A kinematically exact finite element formulation of elastic-plastic curved beams. Comput Struct 67(4):197–214MATHCrossRef
56.
Zurück zum Zitat Schardt R (1966) Eine erweiterung der technischen biegetheorie zur berechnung prismatischer faltwerke. Der Stahlbau 35:161–171 Schardt R (1966) Eine erweiterung der technischen biegetheorie zur berechnung prismatischer faltwerke. Der Stahlbau 35:161–171
57.
Zurück zum Zitat Schardt R (1989) Verallgemeinerte technische Biegetheorie. Springer, BerlinCrossRef Schardt R (1989) Verallgemeinerte technische Biegetheorie. Springer, BerlinCrossRef
58.
Zurück zum Zitat Simo J (1985) A finite strain beam formulation. The three-dimensional dynamics. Part I. Comput Methods Appl Mech Eng 49(1):55–70MATHMathSciNetCrossRef Simo J (1985) A finite strain beam formulation. The three-dimensional dynamics. Part I. Comput Methods Appl Mech Eng 49(1):55–70MATHMathSciNetCrossRef
59.
Zurück zum Zitat Simo J, Fox D (1989) On a stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization. Comput Methods Appl Mech Eng 72(3):267–304MATHMathSciNetCrossRef Simo J, Fox D (1989) On a stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization. Comput Methods Appl Mech Eng 72(3):267–304MATHMathSciNetCrossRef
60.
Zurück zum Zitat Simo J, Hjelmstad K, Taylor R (1984) Numerical formulations of elasto-viscoplastic response of beams accounting for the effect of shear. Comput Methods Appl Mech Eng 42(3):301–330MATHCrossRef Simo J, Hjelmstad K, Taylor R (1984) Numerical formulations of elasto-viscoplastic response of beams accounting for the effect of shear. Comput Methods Appl Mech Eng 42(3):301–330MATHCrossRef
61.
Zurück zum Zitat Simo J, Hughes T (1998) Computational in elasticity. Springer, New York Simo J, Hughes T (1998) Computational in elasticity. Springer, New York
62.
Zurück zum Zitat Simo J, Rifai M, Fox D (1990) On a stress resultant geometrically exact shell model. Part IV: Variable thickness shells with through-the-thickness stretching. Comput Methods Appl Mech Eng 81(1):91–126MATHMathSciNetCrossRef Simo J, Rifai M, Fox D (1990) On a stress resultant geometrically exact shell model. Part IV: Variable thickness shells with through-the-thickness stretching. Comput Methods Appl Mech Eng 81(1):91–126MATHMathSciNetCrossRef
63.
Zurück zum Zitat Simo J, Tarnow N, Doblare M (1995) Non-linear dynamics of three-dimensional rods: exact energy and momentum conserving algorithms. Int J Numer Methods Eng 38(9):1431–1473MATHMathSciNetCrossRef Simo J, Tarnow N, Doblare M (1995) Non-linear dynamics of three-dimensional rods: exact energy and momentum conserving algorithms. Int J Numer Methods Eng 38(9):1431–1473MATHMathSciNetCrossRef
64.
Zurück zum Zitat Simo J, Vu-Quoc L (1986) A three dimensional finite-strain rod model. Part II: computational aspects. Comput Methods Appl Mech Eng 58(1):79–116MATHCrossRef Simo J, Vu-Quoc L (1986) A three dimensional finite-strain rod model. Part II: computational aspects. Comput Methods Appl Mech Eng 58(1):79–116MATHCrossRef
65.
Zurück zum Zitat Simo J, Vu-Quoc L (1991) A geometrically-exact rod model incorporating shear and torsion-warping deformation. Int J Solids Struct 27(3):371–393MATHMathSciNetCrossRef Simo J, Vu-Quoc L (1991) A geometrically-exact rod model incorporating shear and torsion-warping deformation. Int J Solids Struct 27(3):371–393MATHMathSciNetCrossRef
66.
Zurück zum Zitat Sokolnikoff I (1956) Mathematical theory of elasticity. McGraw-Hill Book Co., Inc., New YorkMATH Sokolnikoff I (1956) Mathematical theory of elasticity. McGraw-Hill Book Co., Inc., New YorkMATH
67.
Zurück zum Zitat St. Venant AJCB (1844) Sur les pressions qui se développent à l’intérieur des corps solides lorsque les déplacements de leurs points, sans altérer l’élasticité, ne peuvent cependant pas être considérés comme très petits. Bull Soc Philomath 5:26–28 St. Venant AJCB (1844) Sur les pressions qui se développent à l’intérieur des corps solides lorsque les déplacements de leurs points, sans altérer l’élasticité, ne peuvent cependant pas être considérés comme très petits. Bull Soc Philomath 5:26–28
68.
Zurück zum Zitat Su Y, Wu J, Fan Z, Hwang K, Song J, Huang Y, Rogers J (2012) Postbuckling analysis and its application to stretchable electronics. J Mech Phys Solids 60(3):487–508MATHMathSciNetCrossRef Su Y, Wu J, Fan Z, Hwang K, Song J, Huang Y, Rogers J (2012) Postbuckling analysis and its application to stretchable electronics. J Mech Phys Solids 60(3):487–508MATHMathSciNetCrossRef
69.
Zurück zum Zitat Vlasov V (1959) Tonkostenye Sterjni, 2nd edn. Fizmatgiz, Moscow (French translation: “Piéces Longues en Voiles Minces”, Éditions Eyrolles, Paris, France, 1962) Vlasov V (1959) Tonkostenye Sterjni, 2nd edn. Fizmatgiz, Moscow (French translation: “Piéces Longues en Voiles Minces”, Éditions Eyrolles, Paris, France, 1962)
70.
Zurück zum Zitat Wackerfub J, Gruttmann F (2009) A mixed hybrid finite beam element with an interface to arbitrary three-dimensional material models. Comput Methods Appl Mech Eng 198(27–29):2053–2066CrossRef Wackerfub J, Gruttmann F (2009) A mixed hybrid finite beam element with an interface to arbitrary three-dimensional material models. Comput Methods Appl Mech Eng 198(27–29):2053–2066CrossRef
71.
Zurück zum Zitat Whitman A, DeSilva C (1969) A dynamical theory of elastic directed curves. J Appl Math Phys ZAMP 20(2):200–212MATHCrossRef Whitman A, DeSilva C (1969) A dynamical theory of elastic directed curves. J Appl Math Phys ZAMP 20(2):200–212MATHCrossRef
72.
Zurück zum Zitat Yiu F (2005) A geometrically exact thin-walled beam theory considering in-plane cross-section distortion. Ph.D. thesis, Cornell University, Ithaca, New York Yiu F (2005) A geometrically exact thin-walled beam theory considering in-plane cross-section distortion. Ph.D. thesis, Cornell University, Ithaca, New York
Metadaten
Titel
Extension of non-linear beam models with deformable cross sections
verfasst von
I. Sokolov
S. Krylov
I. Harari
Publikationsdatum
01.12.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 6/2015
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-015-1215-5

Weitere Artikel der Ausgabe 6/2015

Computational Mechanics 6/2015 Zur Ausgabe

Neuer Inhalt