Skip to main content
Erschienen in: Neural Computing and Applications 1/2013

01.12.2013 | Original Article

Comparison of multi-objective evolutionary neural network, adaptive neuro-fuzzy inference system and bootstrap-based neural network for flood forecasting

verfasst von: Amal Kant, Pranmohan K. Suman, Brijesh K. Giri, Mukesh K. Tiwari, Chandranath Chatterjee, Purna C. Nayak, Sawan Kumar

Erschienen in: Neural Computing and Applications | Sonderheft 1/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Accurate flood forecasting is of utmost importance in mitigating flood disasters. Flood causes severe public and economic loss especially in large river basins. In this study, multi-objective evolutionary neural network (MOENN) model is developed for accurate and reliable hourly water level forecasting at Naraj gauging site in Mahanadi river basin, India. The performance of the developed model is compared with adaptive neuro-fuzzy inference system (ANFIS) and bootstrap-based neural network (BNN) models. The performance of the models is compared in terms of Nash–Sutcliffe efficiency, root mean square error, mean absolute error and percentage deviation in peak (D). The performance of the models in forecasting floods is also evaluated using existing performance evaluation criterion of Central Water Commission, India as well as a multiple linear regression model. A partitioning analysis in conjunction with threshold statistics is carried out to evaluate the performance of the developed models in forecasting floods for low, medium and high water levels. It is found that the performance of MOENN and BNN models is more stable and consistent compared to ANFIS model. For longer lead times, the performance of MOENN model is found to be the best, with its performance in forecasting higher water levels being significantly better compared to ANFIS and BNN models. Overall, it is found that MOENN model has great potential to be applied in flood forecasting.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kim S, Kim HS (2008) Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. J Hydrol 351:299–317CrossRef Kim S, Kim HS (2008) Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. J Hydrol 351:299–317CrossRef
2.
Zurück zum Zitat Wang T, Yang KL, Guo YX (2008) Application of artificial neural networks to forecasting ice conditions of the Yellow River in the Inner Mongolia Reach. J Hydrol Eng 13(9):811–816MathSciNetCrossRef Wang T, Yang KL, Guo YX (2008) Application of artificial neural networks to forecasting ice conditions of the Yellow River in the Inner Mongolia Reach. J Hydrol Eng 13(9):811–816MathSciNetCrossRef
3.
Zurück zum Zitat Tiwari MK, Chatterjee C (2010) Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs). J Hydrol 382:20–33CrossRef Tiwari MK, Chatterjee C (2010) Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs). J Hydrol 382:20–33CrossRef
4.
Zurück zum Zitat Tiwari MK, Chatterjee C (2010) Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach. J Hydrol 394(3–4):458–470CrossRef Tiwari MK, Chatterjee C (2010) Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach. J Hydrol 394(3–4):458–470CrossRef
6.
Zurück zum Zitat Nayak PC, Sudheer KP, Rangan DM, Ramasastri KS (2005) Short-term flood forecasting with a neurofuzzy model. Wat Resour Res 41:W04004 Nayak PC, Sudheer KP, Rangan DM, Ramasastri KS (2005) Short-term flood forecasting with a neurofuzzy model. Wat Resour Res 41:W04004
7.
Zurück zum Zitat Cheng CT, Lin JY, Sun YG, Chau KW (2005) Long-term prediction of discharges in Manwan Hydropower using adaptive-network-based fuzzy inference systems models. Advances in Natural Computation, Pt 3, Proceedings. Lecture Notes in Computer Science. Springer, Berlin, pp 1152–1161 Cheng CT, Lin JY, Sun YG, Chau KW (2005) Long-term prediction of discharges in Manwan Hydropower using adaptive-network-based fuzzy inference systems models. Advances in Natural Computation, Pt 3, Proceedings. Lecture Notes in Computer Science. Springer, Berlin, pp 1152–1161
8.
Zurück zum Zitat Keskin ME, Taylan D, Terzi O (2006) Adaptive neural-based fuzzy inference system (ANFIS) approach for modeling hydrological time series. Hydrol Sci J 51(4):588–598CrossRef Keskin ME, Taylan D, Terzi O (2006) Adaptive neural-based fuzzy inference system (ANFIS) approach for modeling hydrological time series. Hydrol Sci J 51(4):588–598CrossRef
9.
Zurück zum Zitat Firat M, Gungor M (2008) Hydrological time-series modeling using an adaptive neuro-fuzzy inference system. Hydrol Processes 22(13):2122–2132CrossRef Firat M, Gungor M (2008) Hydrological time-series modeling using an adaptive neuro-fuzzy inference system. Hydrol Processes 22(13):2122–2132CrossRef
10.
Zurück zum Zitat Abrahart RJ (2003) Neural network rainfall–runoff forecasting based on continuous resampling. J Hydroinf 5(1):51–61 Abrahart RJ (2003) Neural network rainfall–runoff forecasting based on continuous resampling. J Hydroinf 5(1):51–61
11.
Zurück zum Zitat Jeong D, Kim YO (2005) Rainfall–runoff models using artificial neural networks for ensemble streamflow prediction. Hydrol Processes 19:3819–3835CrossRef Jeong D, Kim YO (2005) Rainfall–runoff models using artificial neural networks for ensemble streamflow prediction. Hydrol Processes 19:3819–3835CrossRef
12.
Zurück zum Zitat Jia Y, Culver TB (2006) Bootstrapped artificial neural networks for synthetic flow generation with a small data sample. J Hydrol 331:580–590CrossRef Jia Y, Culver TB (2006) Bootstrapped artificial neural networks for synthetic flow generation with a small data sample. J Hydrol 331:580–590CrossRef
13.
Zurück zum Zitat Srivastav RK, Sudheer KP, Chaubey I (2007) A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models. Wat Resour Res 43:W10407 Srivastav RK, Sudheer KP, Chaubey I (2007) A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models. Wat Resour Res 43:W10407
14.
Zurück zum Zitat Selle B, Hannah B (2010) A bootstrap approach to assess parameter uncertainty in simple catchment models. Environ Model Soft 25:919–926CrossRef Selle B, Hannah B (2010) A bootstrap approach to assess parameter uncertainty in simple catchment models. Environ Model Soft 25:919–926CrossRef
15.
Zurück zum Zitat Ebtehaj M, Moradkhani H, Gupta HV (2010) Improving robustness of hydrologic parameter estimation by the use of moving block bootstrap resampling. Wat Resour Res 46:W07515 Ebtehaj M, Moradkhani H, Gupta HV (2010) Improving robustness of hydrologic parameter estimation by the use of moving block bootstrap resampling. Wat Resour Res 46:W07515
16.
Zurück zum Zitat Morawietz M, Xu C-Y, Gottschalk L, Tallaksen LM (2011) Systematic evaluation of autoregressive error models as post-processors for a probabilistic streamflow forecast system. J Hydrol 407(1–4):58–72CrossRef Morawietz M, Xu C-Y, Gottschalk L, Tallaksen LM (2011) Systematic evaluation of autoregressive error models as post-processors for a probabilistic streamflow forecast system. J Hydrol 407(1–4):58–72CrossRef
17.
Zurück zum Zitat Rajaee T, Mirbagheri SA, Zounemat-Kermani M, Nourani V (2009) Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models. Sci Total Environ 407:4916–4927CrossRef Rajaee T, Mirbagheri SA, Zounemat-Kermani M, Nourani V (2009) Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models. Sci Total Environ 407:4916–4927CrossRef
19.
Zurück zum Zitat Tayfur G, Ozdemir S, Singh VP (2006) ANN and fuzzy logic for simulating event-base rainfall-runoff. J Hydrol Eng 132(12):1321–1329CrossRef Tayfur G, Ozdemir S, Singh VP (2006) ANN and fuzzy logic for simulating event-base rainfall-runoff. J Hydrol Eng 132(12):1321–1329CrossRef
20.
Zurück zum Zitat Jothiprakash V, Magar RB, Kalkutki S (2009) Rainfall–runoff models using adaptive neuro–fuzzy inference system (ANFIS) for an intermittent River. Int J Artif Intell 3:1–23 Jothiprakash V, Magar RB, Kalkutki S (2009) Rainfall–runoff models using adaptive neuro–fuzzy inference system (ANFIS) for an intermittent River. Int J Artif Intell 3:1–23
21.
Zurück zum Zitat Gautam DK, Holz KP (2001) Rainfall-runoff modelling using adaptive neuro-fuzzy systems. J Hydroinf 3:3–10 Gautam DK, Holz KP (2001) Rainfall-runoff modelling using adaptive neuro-fuzzy systems. J Hydroinf 3:3–10
22.
Zurück zum Zitat Nourani V, Kisi Ö, Komasi M (2011) Two hybrid artificial intelligence approaches for modeling rainfall–runoff process. J Hydrol 402(1–2):41–59CrossRef Nourani V, Kisi Ö, Komasi M (2011) Two hybrid artificial intelligence approaches for modeling rainfall–runoff process. J Hydrol 402(1–2):41–59CrossRef
23.
Zurück zum Zitat Abraham A (2004) Meta learning evolutionary artificial neural networks. Neurocomputing 56:1–38CrossRef Abraham A (2004) Meta learning evolutionary artificial neural networks. Neurocomputing 56:1–38CrossRef
24.
Zurück zum Zitat Holland JH (1975) Adaptation in natural and artificial systems, 2nd edn. Massachusetts Institute of Technology, Cambridge Holland JH (1975) Adaptation in natural and artificial systems, 2nd edn. Massachusetts Institute of Technology, Cambridge
25.
Zurück zum Zitat Dawson CW, See LM, Abrahart R, Heppenstall AJ (2006) Symbiotic adaptive neuro-evolution applied to rainfall-runoff modeling in northern England. Neural Netw 19:236–247CrossRef Dawson CW, See LM, Abrahart R, Heppenstall AJ (2006) Symbiotic adaptive neuro-evolution applied to rainfall-runoff modeling in northern England. Neural Netw 19:236–247CrossRef
26.
Zurück zum Zitat Leahy P, Kiely G, Corcoran G (2008) Structural optimisation and input selection of an artificial neural network for river level prediction. J Hydrol 355(1):192–201CrossRef Leahy P, Kiely G, Corcoran G (2008) Structural optimisation and input selection of an artificial neural network for river level prediction. J Hydrol 355(1):192–201CrossRef
27.
Zurück zum Zitat Chaves P, Chang FJ (2008) Intelligent reservoir operation system based on evolving artificial neural networks. Adv Wat Resour 31:926–936CrossRef Chaves P, Chang FJ (2008) Intelligent reservoir operation system based on evolving artificial neural networks. Adv Wat Resour 31:926–936CrossRef
28.
Zurück zum Zitat Y-h Chen, Chang F-J (2009) Evolutionary artificial neural networks for hydrological systems forecasting. J Hydrol 367:125–137CrossRef Y-h Chen, Chang F-J (2009) Evolutionary artificial neural networks for hydrological systems forecasting. J Hydrol 367:125–137CrossRef
29.
Zurück zum Zitat Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, ChicheterMATH Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, ChicheterMATH
30.
Zurück zum Zitat Coello CAC, Lamont GB, Veldhuizen DAV (2002) Evolutionary algorithms for solving multi-objective problems. Kluwer, New YorkCrossRefMATH Coello CAC, Lamont GB, Veldhuizen DAV (2002) Evolutionary algorithms for solving multi-objective problems. Kluwer, New YorkCrossRefMATH
31.
Zurück zum Zitat Chakraborti N (2004) Genetic algorithms in materials design and processing. Int Mater Rev 49(3–4):246–260CrossRef Chakraborti N (2004) Genetic algorithms in materials design and processing. Int Mater Rev 49(3–4):246–260CrossRef
32.
Zurück zum Zitat Biswas A, Maitre O, Mondal DN, Das SK, Sen PK, Collet P, Chakraborti N (2011) Data-driven multiobjective analysis of Manganese leaching from low grade sources using genetic algorithms, genetic programming, and other allied strategies. Mater Manuf Process 26(3):415–430CrossRef Biswas A, Maitre O, Mondal DN, Das SK, Sen PK, Collet P, Chakraborti N (2011) Data-driven multiobjective analysis of Manganese leaching from low grade sources using genetic algorithms, genetic programming, and other allied strategies. Mater Manuf Process 26(3):415–430CrossRef
33.
Zurück zum Zitat Li X (2003) A real-coded predator–prey genetic algorithm for multiobjective optimization. In: Fonseca CM, Fleming PJ, Zitzler E, Deb K, Thiele L (eds) Proceedings of the second international conference on evolutionary multi-criterion optimization, lecture notes in computer science, 2632, LNCS, p 207 Li X (2003) A real-coded predator–prey genetic algorithm for multiobjective optimization. In: Fonseca CM, Fleming PJ, Zitzler E, Deb K, Thiele L (eds) Proceedings of the second international conference on evolutionary multi-criterion optimization, lecture notes in computer science, 2632, LNCS, p 207
34.
Zurück zum Zitat Mitra T, Helle M, Pettersson F, Saxen H, Chakraborti N (2011) Multiobjective optimization of top gas recycling conditions in the blast furnace by genetic algorithms. Mater Manuf Process 26(3):475–480CrossRef Mitra T, Helle M, Pettersson F, Saxen H, Chakraborti N (2011) Multiobjective optimization of top gas recycling conditions in the blast furnace by genetic algorithms. Mater Manuf Process 26(3):475–480CrossRef
35.
Zurück zum Zitat Pettersson F, Suh C, Saxen H, Rajan K, Chakraborti N (2009) Analyzing sparse data for nitride spinels using data mining, neural networks, and multiobjective genetic algorithms. Mater Manuf Process 24(1):2–9CrossRef Pettersson F, Suh C, Saxen H, Rajan K, Chakraborti N (2009) Analyzing sparse data for nitride spinels using data mining, neural networks, and multiobjective genetic algorithms. Mater Manuf Process 24(1):2–9CrossRef
36.
Zurück zum Zitat Mondal DN, Sarangi K, Pettersson F, Sen PK, Saxen H, Chakraborti N (2011) Cu–Zn separation by supported liquid membrane analyzed through multi-objective genetic algorithms. Hydromet 107(3–4):112–123CrossRef Mondal DN, Sarangi K, Pettersson F, Sen PK, Saxen H, Chakraborti N (2011) Cu–Zn separation by supported liquid membrane analyzed through multi-objective genetic algorithms. Hydromet 107(3–4):112–123CrossRef
37.
Zurück zum Zitat Asokan SM, Dutta D (2008) Analysis of water resources in the Mahanadi River Basin, India under projected climate conditions. Hydrol Process 22:3589–3603CrossRef Asokan SM, Dutta D (2008) Analysis of water resources in the Mahanadi River Basin, India under projected climate conditions. Hydrol Process 22:3589–3603CrossRef
38.
Zurück zum Zitat Dewri R, Chakraborti N (2005) Simulating recrystallization through cellular automata and genetic algorithms. Model Simul Mater Sci Eng 13(3):173–183CrossRef Dewri R, Chakraborti N (2005) Simulating recrystallization through cellular automata and genetic algorithms. Model Simul Mater Sci Eng 13(3):173–183CrossRef
39.
Zurück zum Zitat Pettersson F, Chakraborti N, Saxen H (2007) A genetic algorithms based multi-objective neural net applied to noisy blast furnace data. Appl Soft Comput 7:387–397CrossRef Pettersson F, Chakraborti N, Saxen H (2007) A genetic algorithms based multi-objective neural net applied to noisy blast furnace data. Appl Soft Comput 7:387–397CrossRef
40.
Zurück zum Zitat Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man and Cybern 15(1):116–132CrossRefMATH Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man and Cybern 15(1):116–132CrossRefMATH
41.
Zurück zum Zitat Jain A, Kumar S (2009) Dissection of trained neural network hydrologic models for knowledge extraction. Water Resour Res 45:W07420 Jain A, Kumar S (2009) Dissection of trained neural network hydrologic models for knowledge extraction. Water Resour Res 45:W07420
42.
Zurück zum Zitat Jang J-SR (1993) ANFIS: adaptive network based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–683CrossRef Jang J-SR (1993) ANFIS: adaptive network based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–683CrossRef
44.
Zurück zum Zitat Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman and Hall, New YorkCrossRefMATH Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman and Hall, New YorkCrossRefMATH
45.
Zurück zum Zitat Efron B, Tibshirani R (1986) The bootstrap method for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci 1(1):1–35MathSciNet Efron B, Tibshirani R (1986) The bootstrap method for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci 1(1):1–35MathSciNet
46.
Zurück zum Zitat Barreto H, Howland FM (2006) Introductory econometrics: using Monte Carlo simulation with microsoft excel. Cambridge University Press, New York Barreto H, Howland FM (2006) Introductory econometrics: using Monte Carlo simulation with microsoft excel. Cambridge University Press, New York
47.
Zurück zum Zitat Twomey JM, Smith AE (1998) Bias and variance of validation methods for function approximation neural networks under conditions of sparse data. IEEE Trans Syst Man Cybern 28(3):417–430CrossRef Twomey JM, Smith AE (1998) Bias and variance of validation methods for function approximation neural networks under conditions of sparse data. IEEE Trans Syst Man Cybern 28(3):417–430CrossRef
48.
Zurück zum Zitat Pedhazur EJ (1982) Multiple regression in behavioral research: explanation and prediction. Holt, Rinehart and Winston, New York Pedhazur EJ (1982) Multiple regression in behavioral research: explanation and prediction. Holt, Rinehart and Winston, New York
49.
Zurück zum Zitat Leclerca M, Ouarda TBMJ (2007) Non-stationary regional flood frequency analysis at ungauged sites. J Hydrol 343:254–265CrossRef Leclerca M, Ouarda TBMJ (2007) Non-stationary regional flood frequency analysis at ungauged sites. J Hydrol 343:254–265CrossRef
50.
Zurück zum Zitat Sahoo GB, Schladow SG, Reuter JE (2009) Forecasting stream water temperature using regression analysis, artificial neural network, and chaotic non-linear dynamic models. J Hydrol 378:325–342CrossRef Sahoo GB, Schladow SG, Reuter JE (2009) Forecasting stream water temperature using regression analysis, artificial neural network, and chaotic non-linear dynamic models. J Hydrol 378:325–342CrossRef
51.
Zurück zum Zitat Adamowski J, Chan HF, Prasher SO, Ozga-Zielinski B, Sliusarieva A (2012) Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada. Wat Resour Res 48:W01528 Adamowski J, Chan HF, Prasher SO, Ozga-Zielinski B, Sliusarieva A (2012) Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada. Wat Resour Res 48:W01528
52.
Zurück zum Zitat Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models-I. J Hydrol 10:282–290CrossRef Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models-I. J Hydrol 10:282–290CrossRef
53.
Zurück zum Zitat Garrick MC, Cunnane C, Nash JE (1978) A criterion of efficiency for rainfall-runoff models. J Hydrol 36:375–381CrossRef Garrick MC, Cunnane C, Nash JE (1978) A criterion of efficiency for rainfall-runoff models. J Hydrol 36:375–381CrossRef
54.
Zurück zum Zitat Legates DR, McCabe GJ (1999) Evaluating the use of goodness-of-fit measure in hydrologic and hydroclimatic model validation. Wat Resour Res 35:233–241CrossRef Legates DR, McCabe GJ (1999) Evaluating the use of goodness-of-fit measure in hydrologic and hydroclimatic model validation. Wat Resour Res 35:233–241CrossRef
55.
Zurück zum Zitat Hsu K, Gupta HV, Sorooshian S (1995) Artificial neural network modeling of the rainfall-runoff process. Wat Resour Res 31(10):2517–2530CrossRef Hsu K, Gupta HV, Sorooshian S (1995) Artificial neural network modeling of the rainfall-runoff process. Wat Resour Res 31(10):2517–2530CrossRef
56.
Zurück zum Zitat Sudheer KP, Gosain AK, Ramasastri KS (2002) A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol Process 16:1325–1330CrossRef Sudheer KP, Gosain AK, Ramasastri KS (2002) A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol Process 16:1325–1330CrossRef
57.
Zurück zum Zitat Central Water Commission (1989) Manual on flood forecasting. River Management Wing, New Delhi Central Water Commission (1989) Manual on flood forecasting. River Management Wing, New Delhi
Metadaten
Titel
Comparison of multi-objective evolutionary neural network, adaptive neuro-fuzzy inference system and bootstrap-based neural network for flood forecasting
verfasst von
Amal Kant
Pranmohan K. Suman
Brijesh K. Giri
Mukesh K. Tiwari
Chandranath Chatterjee
Purna C. Nayak
Sawan Kumar
Publikationsdatum
01.12.2013
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe Sonderheft 1/2013
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-013-1344-8

Weitere Artikel der Sonderheft 1/2013

Neural Computing and Applications 1/2013 Zur Ausgabe