Skip to main content
Erschienen in: Neural Computing and Applications 3/2018

22.07.2016 | Original Article

Time series forecasting by recurrent product unit neural networks

verfasst von: F. Fernández-Navarro, Maria Angeles de la Cruz, P. A. Gutiérrez, A. Castaño, C. Hervás-Martínez

Erschienen in: Neural Computing and Applications | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Time series forecasting (TSF) consists on estimating models to predict future values based on previously observed values of time series, and it can be applied to solve many real-world problems. TSF has been traditionally tackled by considering autoregressive neural networks (ARNNs) or recurrent neural networks (RNNs), where hidden nodes are usually configured using additive activation functions, such as sigmoidal functions. ARNNs are based on a short-term memory of the time series in the form of lagged time series values used as inputs, while RNNs include a long-term memory structure. The objective of this paper is twofold. First, it explores the potential of multiplicative nodes for ARNNs, by considering product unit (PU) activation functions, motivated by the fact that PUs are specially useful for modelling highly correlated features, such as the lagged time series values used as inputs for ARNNs. Second, it proposes a new hybrid RNN model based on PUs, by estimating the PU outputs from the combination of a long-term reservoir and the short-term lagged time series values. A complete set of experiments with 29 data sets shows competitive performance for both model proposals, and a set of statistical tests confirms that they achieve the state of the art in TSF, with specially promising results for the proposed hybrid RNN. The experiments in this paper show that the recurrent model is very competitive for relatively large time series, where longer forecast horizons are required, while the autoregressive model is a good selection if the data set is small or if a low computational cost is needed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Fußnoten
1
For the sake of clarity, reservoir representation is simplified: there is a link between each reservoir node and each PU, and all reservoir nodes receive \(y_{t-1}\) time series value as input. The interconnections between reservoir nodes are random. Internal connections of the reservoir are given by \({\varvec{\upkappa }}\).
 
4
Scaling the input data to positive values is required to avoid having complex numbers as output of the basis function. Additionally, the scaling considered also avoids having inputs equal to zero or one.
 
7
In these kind of problems small variations in the inputs could produce large changes in the output of the TS. This situation could be modelled with the product units basis functions (as they are potential basis functions).
 
Literatur
1.
Zurück zum Zitat Furquim G, Pessin G, Faiçal B, Mendiondo E, Ueyama J (2015) Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory: a case study involving a real wireless sensor network deployment in brazil. In: Neural computing and applications, pp 1–13. doi:10.1007/s00521-015-1930-z Furquim G, Pessin G, Faiçal B, Mendiondo E, Ueyama J (2015) Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory: a case study involving a real wireless sensor network deployment in brazil. In: Neural computing and applications, pp 1–13. doi:10.​1007/​s00521-015-1930-z
2.
Zurück zum Zitat Arroyo J, Maté C (2009) Forecasting histogram time series with \(k\)-nearest neighbours methods. Int J Forecast 25(1):192–207CrossRef Arroyo J, Maté C (2009) Forecasting histogram time series with \(k\)-nearest neighbours methods. Int J Forecast 25(1):192–207CrossRef
3.
Zurück zum Zitat Arriandiaga A, Portillo E, Sánchez J, Cabanes I, Pombo I (2015) A new approach for dynamic modelling of energy consumption in the grinding process using recurrent neural networks. In: Neural computing and applications, pp 1–16. doi:10.1007/s00521-015-1957-1 Arriandiaga A, Portillo E, Sánchez J, Cabanes I, Pombo I (2015) A new approach for dynamic modelling of energy consumption in the grinding process using recurrent neural networks. In: Neural computing and applications, pp 1–16. doi:10.​1007/​s00521-015-1957-1
4.
Zurück zum Zitat Hansen J, Nelson R (1997) Neural networks and traditional time series methods: a synergistic combination in state economic forecasts. IEEE Trans Neural Netw 8(4):863–873CrossRef Hansen J, Nelson R (1997) Neural networks and traditional time series methods: a synergistic combination in state economic forecasts. IEEE Trans Neural Netw 8(4):863–873CrossRef
5.
Zurück zum Zitat Sitte R, Sitte J (2000) Analysis of the predictive ability of time delay neural networks applied to the S&P 500 time series. IEEE Trans Syst Man Cybern Part C Appl Rev 30(4):568–572CrossRef Sitte R, Sitte J (2000) Analysis of the predictive ability of time delay neural networks applied to the S&P 500 time series. IEEE Trans Syst Man Cybern Part C Appl Rev 30(4):568–572CrossRef
6.
Zurück zum Zitat Connor J, Martin R, Atlas L (1994) Recurrent neural networks and robust time series prediction. IEEE Trans Neural Netw 5(2):240–254CrossRef Connor J, Martin R, Atlas L (1994) Recurrent neural networks and robust time series prediction. IEEE Trans Neural Netw 5(2):240–254CrossRef
7.
Zurück zum Zitat He X, Li C, Huang T, Li C, Huang J (2014) A recurrent neural network for solving bilevel linear programming problem. IEEE Trans Neural Netw Learn Syst 25(4):824–830CrossRef He X, Li C, Huang T, Li C, Huang J (2014) A recurrent neural network for solving bilevel linear programming problem. IEEE Trans Neural Netw Learn Syst 25(4):824–830CrossRef
8.
Zurück zum Zitat Yan Z, Wang J (2014) Robust model predictive control of nonlinear systems with unmodeled dynamics and bounded uncertainties based on neural networks. IEEE Trans Neural Netw Learn Syst 25(3):457–469MathSciNetCrossRef Yan Z, Wang J (2014) Robust model predictive control of nonlinear systems with unmodeled dynamics and bounded uncertainties based on neural networks. IEEE Trans Neural Netw Learn Syst 25(3):457–469MathSciNetCrossRef
9.
Zurück zum Zitat Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef
10.
Zurück zum Zitat Jaeger H (2002) Adaptive nonlinear system identification with echo state networks. In: Advances in neural information processing systems, pp 593–600 Jaeger H (2002) Adaptive nonlinear system identification with echo state networks. In: Advances in neural information processing systems, pp 593–600
11.
Zurück zum Zitat Gallicchio C, Micheli A (2011) Architectural and markovian factors of echo state networks. Neural Netw 24(5):440–456CrossRef Gallicchio C, Micheli A (2011) Architectural and markovian factors of echo state networks. Neural Netw 24(5):440–456CrossRef
12.
Zurück zum Zitat Rodan A, Tino P (2011) Minimum complexity echo state network. IEEE Trans Neural Netw 22(1):131–144CrossRef Rodan A, Tino P (2011) Minimum complexity echo state network. IEEE Trans Neural Netw 22(1):131–144CrossRef
13.
Zurück zum Zitat Hecht-Nielsen R (1989) Theory of the backpropagation neural network. In: International joint conference on neural networks 1989 IJCNN. IEEE, pp 593–605 Hecht-Nielsen R (1989) Theory of the backpropagation neural network. In: International joint conference on neural networks 1989 IJCNN. IEEE, pp 593–605
14.
Zurück zum Zitat Pan F, Zhang H, Xia M (2009) A hybrid time-series forecasting model using extreme learning machines. In: Second international conference on Intelligent Computation Technology and Automation, ICICTA ’09, vol 1, pp 933–936 Pan F, Zhang H, Xia M (2009) A hybrid time-series forecasting model using extreme learning machines. In: Second international conference on Intelligent Computation Technology and Automation, ICICTA ’09, vol 1, pp 933–936
15.
Zurück zum Zitat Huang G-B, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B Cybern 42(2):513–529CrossRef Huang G-B, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B Cybern 42(2):513–529CrossRef
16.
Zurück zum Zitat Durbin R, Rumelhart D (1989) Products units: a computationally powerful and biologically plausible extension to backpropagation networks. Neural Comput 1(1):133–142CrossRef Durbin R, Rumelhart D (1989) Products units: a computationally powerful and biologically plausible extension to backpropagation networks. Neural Comput 1(1):133–142CrossRef
17.
Zurück zum Zitat Goldberg DE et al (1989) Genetic algorithms in search, optimization, and machine learning, vol 412. Addison-Wesley, Reading Menlo ParkMATH Goldberg DE et al (1989) Genetic algorithms in search, optimization, and machine learning, vol 412. Addison-Wesley, Reading Menlo ParkMATH
18.
Zurück zum Zitat Li P, Tan Z, Yan L, Deng K (2011) Time series prediction of mining subsidence based on genetic algorithm neural network. In: 2011 international symposium on computer science and society (ISCCS), pp 83–86 Li P, Tan Z, Yan L, Deng K (2011) Time series prediction of mining subsidence based on genetic algorithm neural network. In: 2011 international symposium on computer science and society (ISCCS), pp 83–86
19.
Zurück zum Zitat Luque C, Ferran J, Vinuela P (2007) Time series forecasting by means of evolutionary algorithms. In: IEEE international 2007 parallel and distributed processing symposium, IPDPS 2007, pp 1–7 Luque C, Ferran J, Vinuela P (2007) Time series forecasting by means of evolutionary algorithms. In: IEEE international 2007 parallel and distributed processing symposium, IPDPS 2007, pp 1–7
20.
Zurück zum Zitat Cai X, Zhang N, Venayagamoorthy G, Wunsch D (2004) Time series prediction with recurrent neural networks using a hybrid PSO–EA algorithm. In: 2004 IEEE international joint conference on neural networks, 2004. Proceedings, vol 2, pp 1647–1652 Cai X, Zhang N, Venayagamoorthy G, Wunsch D (2004) Time series prediction with recurrent neural networks using a hybrid PSO–EA algorithm. In: 2004 IEEE international joint conference on neural networks, 2004. Proceedings, vol 2, pp 1647–1652
21.
Zurück zum Zitat Martínez-Estudillo FJ, Hervás-Martínez C, Gutiérrez PA, Martínez-Estudillo AC (2008) Evolutionary product-unit neural networks classifiers. Neurocomputing 72(1–3):548–561CrossRefMATH Martínez-Estudillo FJ, Hervás-Martínez C, Gutiérrez PA, Martínez-Estudillo AC (2008) Evolutionary product-unit neural networks classifiers. Neurocomputing 72(1–3):548–561CrossRefMATH
22.
Zurück zum Zitat Martínez-Estudillo AC, Martínez-Estudillo FJ, Hervás-Martínez C, García-Pedrajas N (2006) Evolutionary product unit based neural networks for regression. Neural Netw 19(4):477–486CrossRefMATH Martínez-Estudillo AC, Martínez-Estudillo FJ, Hervás-Martínez C, García-Pedrajas N (2006) Evolutionary product unit based neural networks for regression. Neural Netw 19(4):477–486CrossRefMATH
23.
Zurück zum Zitat Dulakshi AWJ, Karunasingha SK, Li WK (2011) Evolutionary product unit based neural networks for hydrological time series analysis. J Hydroinf 13(4):825–841CrossRef Dulakshi AWJ, Karunasingha SK, Li WK (2011) Evolutionary product unit based neural networks for hydrological time series analysis. J Hydroinf 13(4):825–841CrossRef
24.
Zurück zum Zitat Piotrowski AP, Napiorkowski JJ (2012) Product-units neural networks for catchment runoff forecasting. Adv Water Resour 49:97–113CrossRef Piotrowski AP, Napiorkowski JJ (2012) Product-units neural networks for catchment runoff forecasting. Adv Water Resour 49:97–113CrossRef
25.
Zurück zum Zitat Sundermeyer M, Oparin I, Gauvain J-L, Freiberg B, Schluter R, Ney H (2013) Comparison of feedforward and recurrent neural network language models. In: 2013 IEEE international conference on acoustics, speech and signal processing (ICASSP), IEEE, pp 8430–8434 Sundermeyer M, Oparin I, Gauvain J-L, Freiberg B, Schluter R, Ney H (2013) Comparison of feedforward and recurrent neural network language models. In: 2013 IEEE international conference on acoustics, speech and signal processing (ICASSP), IEEE, pp 8430–8434
26.
Zurück zum Zitat Lukoševičius M, Jaeger H (2009) Reservoir computing approaches to recurrent neural network training. Comput Sci Rev 3(3):127–149CrossRefMATH Lukoševičius M, Jaeger H (2009) Reservoir computing approaches to recurrent neural network training. Comput Sci Rev 3(3):127–149CrossRefMATH
27.
Zurück zum Zitat Hansen N (2006) The CMA evolution strategy: a comparing review. In: Towards a new evolutionary computation. Studies in fuzziness and soft computing, vol 192. Springer, Berlin, pp 75–102 Hansen N (2006) The CMA evolution strategy: a comparing review. In: Towards a new evolutionary computation. Studies in fuzziness and soft computing, vol 192. Springer, Berlin, pp 75–102
28.
Zurück zum Zitat Jastrebski G, Arnold D (2006) Improving evolution strategies through active covariance matrix adaptation. In: IEEE congress on 2006 evolutionary computation, CEC 2006, pp 2814–2821 Jastrebski G, Arnold D (2006) Improving evolution strategies through active covariance matrix adaptation. In: IEEE congress on 2006 evolutionary computation, CEC 2006, pp 2814–2821
29.
Zurück zum Zitat Heidrich-Meisner V, Igel C (2009) Neuroevolution strategies for episodic reinforcement learning. J Algorithms 64(4):152–168CrossRefMATH Heidrich-Meisner V, Igel C (2009) Neuroevolution strategies for episodic reinforcement learning. J Algorithms 64(4):152–168CrossRefMATH
30.
Zurück zum Zitat Moriguchi H, Honiden S (2012) CMA-TWEANN: efficient optimization of neural networks via self-adaptation and seamless augmentation. In: Proceedings of the 14th annual conference on genetic and evolutionary computation. ACM, pp 903–910 Moriguchi H, Honiden S (2012) CMA-TWEANN: efficient optimization of neural networks via self-adaptation and seamless augmentation. In: Proceedings of the 14th annual conference on genetic and evolutionary computation. ACM, pp 903–910
31.
Zurück zum Zitat Gundogdu O, Egrioglu E, Aladag C, Yolcu U (2015) Multiplicative neuron model artificial neural network based on gaussian activation function. Neural Comput Appl 27:927–935CrossRef Gundogdu O, Egrioglu E, Aladag C, Yolcu U (2015) Multiplicative neuron model artificial neural network based on gaussian activation function. Neural Comput Appl 27:927–935CrossRef
32.
Zurück zum Zitat Yadav R, Kalra P, John J (2007) Time series prediction with single multiplicative neuron model. Appl Soft Comput 7(4):1157–1163 (Soft computing for time series prediction)CrossRef Yadav R, Kalra P, John J (2007) Time series prediction with single multiplicative neuron model. Appl Soft Comput 7(4):1157–1163 (Soft computing for time series prediction)CrossRef
33.
Zurück zum Zitat Zhao L, Yang Y (2009) PSO-based single multiplicative neuron model for time series prediction. Expert Syst Appl 36(2):2805–2812 (Part 2)MathSciNetCrossRef Zhao L, Yang Y (2009) PSO-based single multiplicative neuron model for time series prediction. Expert Syst Appl 36(2):2805–2812 (Part 2)MathSciNetCrossRef
34.
Zurück zum Zitat Attia M, Sallam E, Fahmy M (Aug 2012) A proposed generalized mean single multiplicative neuron model. In: 2012 IEEE international conference on intelligent computer communication and processing (ICCP), pp 73–78 Attia M, Sallam E, Fahmy M (Aug 2012) A proposed generalized mean single multiplicative neuron model. In: 2012 IEEE international conference on intelligent computer communication and processing (ICCP), pp 73–78
35.
Zurück zum Zitat Egrioglu E, Yolcu U, Aladag C, Bas E (2015) Recurrent multiplicative neuron model artificial neural network for non-linear time series forecasting. Neural Process Lett 41(2):249–258CrossRef Egrioglu E, Yolcu U, Aladag C, Bas E (2015) Recurrent multiplicative neuron model artificial neural network for non-linear time series forecasting. Neural Process Lett 41(2):249–258CrossRef
36.
Zurück zum Zitat Gutiérrez PA, Segovia-Vargas MJ, Salcedo-Sanz S, Hervás-Martínez C, Sanchís A, Portilla-Figueras JA, Fernández-Navarro F (2010) Hybridizing logistic regression with product unit and rbf networks for accurate detection and prediction of banking crises. Omega 38(5):333–344CrossRef Gutiérrez PA, Segovia-Vargas MJ, Salcedo-Sanz S, Hervás-Martínez C, Sanchís A, Portilla-Figueras JA, Fernández-Navarro F (2010) Hybridizing logistic regression with product unit and rbf networks for accurate detection and prediction of banking crises. Omega 38(5):333–344CrossRef
37.
Zurück zum Zitat Saini L, Soni M (2002) Artificial neural network based peak load forecasting using Levenberg–Marquardt and quasi-Newton methods. IEE Proc Gener Transm Distrib 149(5):578–584CrossRef Saini L, Soni M (2002) Artificial neural network based peak load forecasting using Levenberg–Marquardt and quasi-Newton methods. IEE Proc Gener Transm Distrib 149(5):578–584CrossRef
38.
Zurück zum Zitat Hansen N, Niederberger ASP, Guzzella L, Koumoutsakos P (2009) A method for handling uncertainty in evolutionary optimization with an application to feedback control of combustion. IEEE Trans Evolut Comput 13(1):180–197CrossRef Hansen N, Niederberger ASP, Guzzella L, Koumoutsakos P (2009) A method for handling uncertainty in evolutionary optimization with an application to feedback control of combustion. IEEE Trans Evolut Comput 13(1):180–197CrossRef
39.
Zurück zum Zitat Ros R, Hansen N (2008) A simple modification in CMA-ES achieving linear time and space complexity. In: Proceedings of the 10th international conference on parallel problem solving from nature: PPSN X. Springer, pp 296–305 Ros R, Hansen N (2008) A simple modification in CMA-ES achieving linear time and space complexity. In: Proceedings of the 10th international conference on parallel problem solving from nature: PPSN X. Springer, pp 296–305
40.
Zurück zum Zitat Huang G-B, Zhu Q-Y, Siew C-K (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: 2004 IEEE international joint conference on neural networks, 2004. Proceedings, vol 2, pp 985–990 Huang G-B, Zhu Q-Y, Siew C-K (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: 2004 IEEE international joint conference on neural networks, 2004. Proceedings, vol 2, pp 985–990
41.
Zurück zum Zitat Ozturk MC, Xu D, Príncipe JC (2007) Analysis and design of echo state networks. Neural Comput 19(1):111–138CrossRefMATH Ozturk MC, Xu D, Príncipe JC (2007) Analysis and design of echo state networks. Neural Comput 19(1):111–138CrossRefMATH
42.
Zurück zum Zitat Bergmeir C, Triguero I, Molina D, Aznarte J, Benitez J (2012) Time series modeling and forecasting using memetic algorithms for regimen-switching models. IEEE Trans Neural Netw Learn Syst 23(11):1841–1847CrossRef Bergmeir C, Triguero I, Molina D, Aznarte J, Benitez J (2012) Time series modeling and forecasting using memetic algorithms for regimen-switching models. IEEE Trans Neural Netw Learn Syst 23(11):1841–1847CrossRef
43.
Zurück zum Zitat Alcalá-Fdez J, Fernández A, Luengo J, Derrac J, García S (2011) Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. Mult Valued Logic Soft Comput 17(2–3):255–287 Alcalá-Fdez J, Fernández A, Luengo J, Derrac J, García S (2011) Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. Mult Valued Logic Soft Comput 17(2–3):255–287
44.
Zurück zum Zitat Said SE, Dickey DA (1984) Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika 71(3):599–607MathSciNetCrossRefMATH Said SE, Dickey DA (1984) Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika 71(3):599–607MathSciNetCrossRefMATH
45.
Zurück zum Zitat Ragulskis M, Lukoseviciute K (2009) Non-uniform attractor embedding for time series forecasting by fuzzy inference systems. Neurocomputing 72(10):2618–2626CrossRef Ragulskis M, Lukoseviciute K (2009) Non-uniform attractor embedding for time series forecasting by fuzzy inference systems. Neurocomputing 72(10):2618–2626CrossRef
46.
Zurück zum Zitat Crone S, Dhawan R (2007) Forecasting seasonal time series with neural networks: a sensitivity analysis of architecture parameters. In: International joint conference on neural networks, IJCNN 2007, pp 2099–2104 Crone S, Dhawan R (2007) Forecasting seasonal time series with neural networks: a sensitivity analysis of architecture parameters. In: International joint conference on neural networks, IJCNN 2007, pp 2099–2104
47.
Zurück zum Zitat Chow TWS, Leung C (1996) Nonlinear autoregressive integrated neural network model for short-term load forecasting. IEE Proc Gener Transm Distrib 143(5):500–506CrossRef Chow TWS, Leung C (1996) Nonlinear autoregressive integrated neural network model for short-term load forecasting. IEE Proc Gener Transm Distrib 143(5):500–506CrossRef
48.
Zurück zum Zitat Redel-Macías MD, Fernández-Navarro F, Gutiérrez PA, Cubero-Atienza AJ, Hervás-Martínez C (2013) Ensembles of evolutionary product unit or RBF neural networks for the identification of sound for pass-by noise test in vehicles. Neurocomputing 109:56–65CrossRef Redel-Macías MD, Fernández-Navarro F, Gutiérrez PA, Cubero-Atienza AJ, Hervás-Martínez C (2013) Ensembles of evolutionary product unit or RBF neural networks for the identification of sound for pass-by noise test in vehicles. Neurocomputing 109:56–65CrossRef
49.
Zurück zum Zitat Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30MathSciNetMATH Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30MathSciNetMATH
50.
Zurück zum Zitat Zar JH et al (1999) Biostatistical analysis: Pearson Education India. Prentice Hall City, New Jersey Zar JH et al (1999) Biostatistical analysis: Pearson Education India. Prentice Hall City, New Jersey
51.
Zurück zum Zitat Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat 11(1):86–92MathSciNetCrossRefMATH Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat 11(1):86–92MathSciNetCrossRefMATH
53.
54.
Zurück zum Zitat Aznarte JL, Alcalá-Fdez J, Arauzo-Azofra A, Benítez JM (2012) Financial time series forecasting with a bio-inspired fuzzy model. Expert Syst Appl 39(16):12302–12309CrossRef Aznarte JL, Alcalá-Fdez J, Arauzo-Azofra A, Benítez JM (2012) Financial time series forecasting with a bio-inspired fuzzy model. Expert Syst Appl 39(16):12302–12309CrossRef
55.
Zurück zum Zitat Adhikari R, Agrawal R (2012) Forecasting strong seasonal time series with artificial neural networks. J Sci Ind Res 71(10):657 Adhikari R, Agrawal R (2012) Forecasting strong seasonal time series with artificial neural networks. J Sci Ind Res 71(10):657
56.
Zurück zum Zitat Rocha T, Paredes S, de Carvalho P, Henriques J (2013) An effective wavelet strategy for the trend prediction of physiological time series with application to phealth systems. In: 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC) (2013). IEEE, pp 6788–6791 Rocha T, Paredes S, de Carvalho P, Henriques J (2013) An effective wavelet strategy for the trend prediction of physiological time series with application to phealth systems. In: 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC) (2013). IEEE, pp 6788–6791
57.
Zurück zum Zitat Yao X (1999) Evolving artificial neural networks. Proc IEEE 87(9):1423–1447CrossRef Yao X (1999) Evolving artificial neural networks. Proc IEEE 87(9):1423–1447CrossRef
58.
Zurück zum Zitat Nikolaou A, Gutiérrez PA, Durán A, Dicaire I, Fernández-Navarro F, Hervás-Martínez C (2015) Detection of early warning signals in paleoclimate data using a genetic time series segmentation algorithm. Clim Dyn 44(7–8):1919–1933CrossRef Nikolaou A, Gutiérrez PA, Durán A, Dicaire I, Fernández-Navarro F, Hervás-Martínez C (2015) Detection of early warning signals in paleoclimate data using a genetic time series segmentation algorithm. Clim Dyn 44(7–8):1919–1933CrossRef
59.
Zurück zum Zitat Fernández-Navarro F, Hervás-Martínez C, Gutiérrez PA (2013) Generalised gaussian radial basis function neural networks. Soft Comput 17(3):519–533CrossRef Fernández-Navarro F, Hervás-Martínez C, Gutiérrez PA (2013) Generalised gaussian radial basis function neural networks. Soft Comput 17(3):519–533CrossRef
Metadaten
Titel
Time series forecasting by recurrent product unit neural networks
verfasst von
F. Fernández-Navarro
Maria Angeles de la Cruz
P. A. Gutiérrez
A. Castaño
C. Hervás-Martínez
Publikationsdatum
22.07.2016
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 3/2018
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2494-2

Weitere Artikel der Ausgabe 3/2018

Neural Computing and Applications 3/2018 Zur Ausgabe

Premium Partner