Skip to main content
Erschienen in: Neural Computing and Applications 3/2018

29.11.2016 | Original Article

A length factor artificial neural network method for the numerical solution of the advection dispersion equation characterizing the mass balance of fluid flow in a chemical reactor

verfasst von: Neha Yadav, Kevin Stanley McFall, Manoj Kumar, Joong Hoon Kim

Erschienen in: Neural Computing and Applications | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, a length factor artificial neural network (ANN) method is proposed for the numerical solution of the advection dispersion equation (ADE) in steady state that is used extensively in fluid dynamics and in the mass balance of a chemical reactor. An approximate trial solution of the ADE is constructed in terms of ANN using the concept of the length factor in a way that automatically satisfies the desired boundary conditions, regardless of the ANN output. The mathematical model of ADE is presented adopting a first-order reaction, and the steady-state case for the same is examined by estimating the numerical solution using the ANN technique. Numerical simulations are performed by choosing the best ANN ensemble, based on a combination of numerous design parameters, random starting weights, and biases. The solution obtained using the ANN method is compared to the existing finite difference method (FDM) to test the reliability and effectiveness of the proposed approach. Three cases of ADE are considered in this study for different values of advection and dispersion. The numerical results show that the ANN method exhibits a higher accuracy than the FDM, even for the smaller number of training points in the domain, and eliminates the instability issues for the case where advection dominates dispersion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Himmelblau DM (1967) Basic principles and calculations in chemical engineering, 2nd edn. Prentice-Hall, Englewood Cliffs Himmelblau DM (1967) Basic principles and calculations in chemical engineering, 2nd edn. Prentice-Hall, Englewood Cliffs
2.
Zurück zum Zitat Freijera JI, Veling EJM, Hassanizadeh SM (1998) Analytical solutions of the convection–dispersion equation applied to transport of pesticides in soil columns. Environ Model Softw 13(2):139–149CrossRef Freijera JI, Veling EJM, Hassanizadeh SM (1998) Analytical solutions of the convection–dispersion equation applied to transport of pesticides in soil columns. Environ Model Softw 13(2):139–149CrossRef
3.
Zurück zum Zitat O’Loughlin EM, Bowner KH (1975) Dilution and decay of aquatic herbicides in flowing channels. J Hydrol 26(34):217–235CrossRef O’Loughlin EM, Bowner KH (1975) Dilution and decay of aquatic herbicides in flowing channels. J Hydrol 26(34):217–235CrossRef
4.
Zurück zum Zitat Hossain MA, Yonge DR (1999) On Galerkin models for transport in ground water. Appl Math Comput 100(2–3):249–263MathSciNetMATH Hossain MA, Yonge DR (1999) On Galerkin models for transport in ground water. Appl Math Comput 100(2–3):249–263MathSciNetMATH
5.
Zurück zum Zitat Kumar N (1983) Unsteady flow against dispersion in finite porous media. J Hydrol 63(3–4):345–358CrossRef Kumar N (1983) Unsteady flow against dispersion in finite porous media. J Hydrol 63(3–4):345–358CrossRef
6.
Zurück zum Zitat Guvanasen V, Volker R (1983) Numerical solutions for solute transport in unconfined aquifers. Int J Numer Methods Fluids 3(2):103–123CrossRefMATH Guvanasen V, Volker R (1983) Numerical solutions for solute transport in unconfined aquifers. Int J Numer Methods Fluids 3(2):103–123CrossRefMATH
7.
Zurück zum Zitat van Genuchten MT, Alves WJ (1982) Analytical solutions of the one dimensional convective dispersive solute transport equations. US Dep Agric Tech Bull 1661:151 van Genuchten MT, Alves WJ (1982) Analytical solutions of the one dimensional convective dispersive solute transport equations. US Dep Agric Tech Bull 1661:151
8.
Zurück zum Zitat Ataie-Ashtiani B, Hosseini SA (2005) Numerical errors of explicit finite difference approximation for two-dimensional solute transport equation with linear sorption. Environ Model Softw 20(7):817–826CrossRef Ataie-Ashtiani B, Hosseini SA (2005) Numerical errors of explicit finite difference approximation for two-dimensional solute transport equation with linear sorption. Environ Model Softw 20(7):817–826CrossRef
9.
Zurück zum Zitat Ataie-Ashtiani B, Hosseini SA (2005) Error analysis of finite difference methods for two-dimensional advection dispersion reaction equation. Adv Water Resour 28(8):793–806CrossRef Ataie-Ashtiani B, Hosseini SA (2005) Error analysis of finite difference methods for two-dimensional advection dispersion reaction equation. Adv Water Resour 28(8):793–806CrossRef
10.
Zurück zum Zitat Sheu TWH, Chen YH (2002) Finite element analysis of contaminant transport in groundwater. Appl Math Comput 127(1):23–43MathSciNetMATH Sheu TWH, Chen YH (2002) Finite element analysis of contaminant transport in groundwater. Appl Math Comput 127(1):23–43MathSciNetMATH
11.
Zurück zum Zitat Zheng C, Bennett GD (2002) Applied contaminant transport modelling. Wiley, New York Zheng C, Bennett GD (2002) Applied contaminant transport modelling. Wiley, New York
12.
Zurück zum Zitat Kojouharov HV, Chen BM (1999) Nonstandard methods for the convective–dispersive transport equation with nonlinear reactions. Numer Methods Part Differ Equ 15(6):617–624MathSciNetCrossRefMATH Kojouharov HV, Chen BM (1999) Nonstandard methods for the convective–dispersive transport equation with nonlinear reactions. Numer Methods Part Differ Equ 15(6):617–624MathSciNetCrossRefMATH
13.
Zurück zum Zitat Kadalbajoo MK, Yadaw AS (2008) B-Spline collocation method for a two-parameter singularly perturbed convection–diffusion boundary value problems. Appl Math Comput 201(1–2):504–513MathSciNetMATH Kadalbajoo MK, Yadaw AS (2008) B-Spline collocation method for a two-parameter singularly perturbed convection–diffusion boundary value problems. Appl Math Comput 201(1–2):504–513MathSciNetMATH
14.
Zurück zum Zitat Thongmoon M, McKibbin R (2006) A comparison of some numerical methods for the advection diffusion equation. Res Lett Inf Math Sci 10:49–62 Thongmoon M, McKibbin R (2006) A comparison of some numerical methods for the advection diffusion equation. Res Lett Inf Math Sci 10:49–62
15.
Zurück zum Zitat Lagaris IE, Likas A, Fotiadis DI (1998) Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans Neural Netw 9(5):987–1000CrossRef Lagaris IE, Likas A, Fotiadis DI (1998) Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans Neural Netw 9(5):987–1000CrossRef
16.
Zurück zum Zitat Yadav N, Yadav A, Kumar M (2015) An introduction to neural network methods for differential equations, Springer briefs in applied sciences and technology. Springer, Netherlands Yadav N, Yadav A, Kumar M (2015) An introduction to neural network methods for differential equations, Springer briefs in applied sciences and technology. Springer, Netherlands
17.
Zurück zum Zitat Raja MAZ, Samar R (2013) Neural network optimized with evolutionary computing technique for solving the 2-dimensional Bratu problem. Neural Comput Appl 23(7):2199–2210CrossRef Raja MAZ, Samar R (2013) Neural network optimized with evolutionary computing technique for solving the 2-dimensional Bratu problem. Neural Comput Appl 23(7):2199–2210CrossRef
18.
Zurück zum Zitat Malek A, Beidokhti RS (2006) Numerical simulation for high order differential equations using a hybrid neural network-optimization method. Appl Math Comput 183(1):260–271MathSciNetMATH Malek A, Beidokhti RS (2006) Numerical simulation for high order differential equations using a hybrid neural network-optimization method. Appl Math Comput 183(1):260–271MathSciNetMATH
19.
Zurück zum Zitat Smaoui N, Al-Enezi S (2004) Modelling the dynamics of nonlinear partial differential equation using neural networks. J Comput Appl Math 170(1):27–58MathSciNetCrossRefMATH Smaoui N, Al-Enezi S (2004) Modelling the dynamics of nonlinear partial differential equation using neural networks. J Comput Appl Math 170(1):27–58MathSciNetCrossRefMATH
20.
Zurück zum Zitat Shirvany Y, Hayati M, Moradian R (2009) Multilayer perceptron neural networks with novel unsupervised training method for numerical solution of partial differential equation. Appl Soft Comput 9(1):20–29CrossRef Shirvany Y, Hayati M, Moradian R (2009) Multilayer perceptron neural networks with novel unsupervised training method for numerical solution of partial differential equation. Appl Soft Comput 9(1):20–29CrossRef
21.
Zurück zum Zitat McFall KS (2013) Automated design parameter selection for neural networks solving coupled partial differential equations with discontinuities. J Frankl Inst 350(2):300–317MathSciNetCrossRefMATH McFall KS (2013) Automated design parameter selection for neural networks solving coupled partial differential equations with discontinuities. J Frankl Inst 350(2):300–317MathSciNetCrossRefMATH
22.
Zurück zum Zitat Yadav N, Yadav A, Kumar M, Kim JH (2015) An efficient algorithm based on artificial neural networks and particle swarm optimization for solution of nonlinear Troesch’s problem. Neural Comput Appl. doi:10.1007/s00521-015-2046-1 Yadav N, Yadav A, Kumar M, Kim JH (2015) An efficient algorithm based on artificial neural networks and particle swarm optimization for solution of nonlinear Troesch’s problem. Neural Comput Appl. doi:10.​1007/​s00521-015-2046-1
23.
Zurück zum Zitat McFall KS, Mahan JR (2009) Artificial neural network method for solution of boundary value problems with exact satisfaction of arbitrary boundary conditions. IEEE Trans Neural Netw 20(8):1221–1233CrossRef McFall KS, Mahan JR (2009) Artificial neural network method for solution of boundary value problems with exact satisfaction of arbitrary boundary conditions. IEEE Trans Neural Netw 20(8):1221–1233CrossRef
24.
Zurück zum Zitat Lagaris IE, Likas A, Papageorgiou DG (2000) Neural network methods for boundary value problems with irregular boundaries. IEEE Trans Neural Netw 11(5):1041–1049CrossRef Lagaris IE, Likas A, Papageorgiou DG (2000) Neural network methods for boundary value problems with irregular boundaries. IEEE Trans Neural Netw 11(5):1041–1049CrossRef
25.
Zurück zum Zitat Fogler HS (1999) Elements of chemical reaction engineering, 3rd edn. Prentice-Hall, Englewood Cliffs Fogler HS (1999) Elements of chemical reaction engineering, 3rd edn. Prentice-Hall, Englewood Cliffs
26.
Zurück zum Zitat Rawlings JB, Ekerdt JG (2002) Chemical reactor analysis and design fundamentals. Nob Hill Publishing, New Jersey Rawlings JB, Ekerdt JG (2002) Chemical reactor analysis and design fundamentals. Nob Hill Publishing, New Jersey
27.
Zurück zum Zitat Krogh A, Vedelsby J (1995) Neural network ensembles, cross validation, and active learning. Adv Neural Inf Process Syst 7:231–238 Krogh A, Vedelsby J (1995) Neural network ensembles, cross validation, and active learning. Adv Neural Inf Process Syst 7:231–238
Metadaten
Titel
A length factor artificial neural network method for the numerical solution of the advection dispersion equation characterizing the mass balance of fluid flow in a chemical reactor
verfasst von
Neha Yadav
Kevin Stanley McFall
Manoj Kumar
Joong Hoon Kim
Publikationsdatum
29.11.2016
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 3/2018
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2722-9

Weitere Artikel der Ausgabe 3/2018

Neural Computing and Applications 3/2018 Zur Ausgabe