Skip to main content
Erschienen in: Microsystem Technologies 8/2019

27.11.2018 | Technical Paper

Manufacturing methods of stretchable liquid metal-based antenna

verfasst von: Nathan Jackson, John Buckley, Cian Clarke, Frank Stam

Erschienen in: Microsystem Technologies | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Stretchable electronics for wearable applications are a highly researched topic over the past decade in application areas such as health and fitness. The use of stretchable rather than rigid materials enables the device to conform to the human body allowing wireless sensor patches to be integrated into clothing or bonded to skin. However, to have a completely functional system, all the components need to be stretchable at the micro-scale and methods of making the components should be compatible with standard MEMS fabrication methods. This paper investigates the use of liquid metal as a stretchable conductor to be used as an antenna. Silicone-based elastomers were investigated to enhance elongation of the device. Methods of integrating the liquid metal with microfabricated devices were investigated along with corrosion of metal interconnects and liquid metal fill factor effects due to stretching using 3D X-ray imaging. Results demonstrated that a macro-scale monopole antenna was able to tune the frequency with an elongation of > 40%. Increased elongation affects the electrical resistance of the liquid metal and the resonant frequency of the antenna and should be accounted for in the circuit design. A new spiral shaped device was fabricated using Parylene-C with dispensed liquid metal which demonstrated complete filling and potential elongation up to 200%. This new thin film liquid metal device has excellent stretch ability, is microfabrication friendly, and has an excellent fill factor.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Cadwallader L (2003) Gallium safety in the laboratory. Idaho National Laboratory, Idaho Falls Cadwallader L (2003) Gallium safety in the laboratory. Idaho National Laboratory, Idaho Falls
Zurück zum Zitat Cheng S, Rydberg A, Hjort K, Wu Z (2009) Liquid metal stretchable unbalanced loop antenna. Appl Phys Lett 94(14):144103CrossRef Cheng S, Rydberg A, Hjort K, Wu Z (2009) Liquid metal stretchable unbalanced loop antenna. Appl Phys Lett 94(14):144103CrossRef
Zurück zum Zitat Chiolerio A, Quadrelli M (2017) Smart fluid systems: the advent of autonomous liquid robotics. Adv Sci 4(7):1700036CrossRef Chiolerio A, Quadrelli M (2017) Smart fluid systems: the advent of autonomous liquid robotics. Adv Sci 4(7):1700036CrossRef
Zurück zum Zitat Cotton D, Graz P, Lacour S (2009) A multifunctional capacitive sensor for stretchable electronic skins. IEEE Sens 9:2000–2009CrossRef Cotton D, Graz P, Lacour S (2009) A multifunctional capacitive sensor for stretchable electronic skins. IEEE Sens 9:2000–2009CrossRef
Zurück zum Zitat Dickey M, Chiechi R, Larsen R, Weiss E, Weitz D, Whitesides G (2008) Eutectic gallium–indium (EGaIn) a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv Funct Mater 18(7):1097–1104CrossRef Dickey M, Chiechi R, Larsen R, Weiss E, Weitz D, Whitesides G (2008) Eutectic gallium–indium (EGaIn) a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv Funct Mater 18(7):1097–1104CrossRef
Zurück zum Zitat Gonzalez M, Axisa F, Bulcke M, Brosteaux D, Vandevelde B, Vanfleteren J (2008) Design of metal interconnects for stretchable electronic circuits. Microelectron Reliab 48:825–832CrossRef Gonzalez M, Axisa F, Bulcke M, Brosteaux D, Vandevelde B, Vanfleteren J (2008) Design of metal interconnects for stretchable electronic circuits. Microelectron Reliab 48:825–832CrossRef
Zurück zum Zitat Hodes M, Zhang R, Wilcoxon R, Lower N (2012) Cooling potential of galinstan-based microchannel heat sinks. In: Thermal and thermomechanical phenomena in electronic systems 2012: IEEE intersociety Hodes M, Zhang R, Wilcoxon R, Lower N (2012) Cooling potential of galinstan-based microchannel heat sinks. In: Thermal and thermomechanical phenomena in electronic systems 2012: IEEE intersociety
Zurück zum Zitat Jackson N, Mathewson A (2017) Enhancing the piezoelectric properties of flexible hybrid AlN materials using semi-crystalline parylene. Smart Mater Struct 26(4):04505CrossRef Jackson N, Mathewson A (2017) Enhancing the piezoelectric properties of flexible hybrid AlN materials using semi-crystalline parylene. Smart Mater Struct 26(4):04505CrossRef
Zurück zum Zitat Jackson N, Lynette K, Mathewson A (2013) Flexible-CMOS and biocompatible piezoelectric AlN material for MEMS applications. Smart Mater Struct 22(11):115033CrossRef Jackson N, Lynette K, Mathewson A (2013) Flexible-CMOS and biocompatible piezoelectric AlN material for MEMS applications. Smart Mater Struct 22(11):115033CrossRef
Zurück zum Zitat Jackson N, Stam F, O’Brien J, Kailias L, Mathewson A, O’Murchu C (2016) Crystallinity and mechanical effects from annealing Parylene thin films. Thin Solid Films 603:371–376CrossRef Jackson N, Stam F, O’Brien J, Kailias L, Mathewson A, O’Murchu C (2016) Crystallinity and mechanical effects from annealing Parylene thin films. Thin Solid Films 603:371–376CrossRef
Zurück zum Zitat Khang D, Rogers J, Lee H (2009) Mechanical buckling: mechanics, metrology, and stretchable electronics. Adv Funct Mater 19(10):1526–2536CrossRef Khang D, Rogers J, Lee H (2009) Mechanical buckling: mechanics, metrology, and stretchable electronics. Adv Funct Mater 19(10):1526–2536CrossRef
Zurück zum Zitat Khonodoker M, Sameoto D (2016) Fabrication methods and applications of microstructured gallium based liquid metal alloys. Smart Mater Struct 25(9):093001CrossRef Khonodoker M, Sameoto D (2016) Fabrication methods and applications of microstructured gallium based liquid metal alloys. Smart Mater Struct 25(9):093001CrossRef
Zurück zum Zitat Kim DH, Lu N, Ma R, Kim Y, Kim R, Wang S et al (2011) Epidermal electronics. Science 333(6044):838–843CrossRef Kim DH, Lu N, Ma R, Kim Y, Kim R, Wang S et al (2011) Epidermal electronics. Science 333(6044):838–843CrossRef
Zurück zum Zitat Lazarus N, Meyer C, Bedair S, Nochetto S, Kierzewski I (2014) Multilayer liquid metal stretchable inductors. Smart Mater Struct 23:085036CrossRef Lazarus N, Meyer C, Bedair S, Nochetto S, Kierzewski I (2014) Multilayer liquid metal stretchable inductors. Smart Mater Struct 23:085036CrossRef
Zurück zum Zitat Lee S, Lee J, Yoon Y, Park S, Cheon C, Kim K et al (2011) A wideband spiral antenna for ingestible capsule endoscope systems: experimental results in a human phantom and pig. IEEE Trans Biomed Eng 58(6):1734–1741CrossRef Lee S, Lee J, Yoon Y, Park S, Cheon C, Kim K et al (2011) A wideband spiral antenna for ingestible capsule endoscope systems: experimental results in a human phantom and pig. IEEE Trans Biomed Eng 58(6):1734–1741CrossRef
Zurück zum Zitat Lindersson S (2014) Reactivity of galinstan with specific transition metal carbides Lindersson S (2014) Reactivity of galinstan with specific transition metal carbides
Zurück zum Zitat Liu P, Yang S, Wang X, Yang M, Song J, Dong L (2017) Directivity-reconfigurable wideband two-arm spiral antenna. IEEE Antennas Wirel Propag Lett 16:66–69CrossRef Liu P, Yang S, Wang X, Yang M, Song J, Dong L (2017) Directivity-reconfigurable wideband two-arm spiral antenna. IEEE Antennas Wirel Propag Lett 16:66–69CrossRef
Zurück zum Zitat Pu X, Li L, Song H, Du C, Zhao Z, Jiang C et al (2015) A self-charging power unit by integration of a textile triboelectric nanogenerator and flexible lithium ion battery for wearable electronics. Adv Mater 27(15):2472–2478CrossRef Pu X, Li L, Song H, Du C, Zhao Z, Jiang C et al (2015) A self-charging power unit by integration of a textile triboelectric nanogenerator and flexible lithium ion battery for wearable electronics. Adv Mater 27(15):2472–2478CrossRef
Zurück zum Zitat Rogers J, Someya T, Huang Y (2010) Materials and mechanics for stretchable electronics. Science 327:1603–1607CrossRef Rogers J, Someya T, Huang Y (2010) Materials and mechanics for stretchable electronics. Science 327:1603–1607CrossRef
Zurück zum Zitat Sen P, Kim C (2009) Microscale liquid-metal switches—a review. IEEE Trans Ind Electron 56(4):1314–1330CrossRef Sen P, Kim C (2009) Microscale liquid-metal switches—a review. IEEE Trans Ind Electron 56(4):1314–1330CrossRef
Zurück zum Zitat So JH, Thelen J, Qusba A, Hayes G, Lazzi G, Dickey M (2009) Reversibly deformable and mechanically tunable fluidic antennas. Adv Funct Mater 19(22):3632–3637CrossRef So JH, Thelen J, Qusba A, Hayes G, Lazzi G, Dickey M (2009) Reversibly deformable and mechanically tunable fluidic antennas. Adv Funct Mater 19(22):3632–3637CrossRef
Zurück zum Zitat Stam F, Razeeb K, Salwa S, Mathewson A (2009) Micro-nano interconnect between gold bond pads and copper nano-wires embedded in a polymer template. In: Electronic components and technology conference, 2009 Stam F, Razeeb K, Salwa S, Mathewson A (2009) Micro-nano interconnect between gold bond pads and copper nano-wires embedded in a polymer template. In: Electronic components and technology conference, 2009
Zurück zum Zitat Stoppa M, Chiolerio A (2014) Wearable electronics and smart textiles: a critical review. Sensors 14(7):11957–11992CrossRef Stoppa M, Chiolerio A (2014) Wearable electronics and smart textiles: a critical review. Sensors 14(7):11957–11992CrossRef
Zurück zum Zitat Sun Y, Rogers J (2007) Inorganic semiconductors for flexible electronics. Adv Mater 19(15):1897–1916CrossRef Sun Y, Rogers J (2007) Inorganic semiconductors for flexible electronics. Adv Mater 19(15):1897–1916CrossRef
Zurück zum Zitat Wang X, Liu J (2016) Recent advancements in liquid metal flexible printed electronics: properties, technologies, and applications. Micromachines 7(12):206CrossRef Wang X, Liu J (2016) Recent advancements in liquid metal flexible printed electronics: properties, technologies, and applications. Micromachines 7(12):206CrossRef
Zurück zum Zitat Wu H, Huang Y, Xu F, Duan Y, Yin Z (2016) Energy harvesters for wearable and stretchable electronics: from flexibility to stretchability. Adv Mater 28(45):9881–9919CrossRef Wu H, Huang Y, Xu F, Duan Y, Yin Z (2016) Energy harvesters for wearable and stretchable electronics: from flexibility to stretchability. Adv Mater 28(45):9881–9919CrossRef
Zurück zum Zitat Xie K, Wei B (2014) Materials and structures for stretchable energy storage and conversion devices. Adv Mater 26:3592–3617CrossRef Xie K, Wei B (2014) Materials and structures for stretchable energy storage and conversion devices. Adv Mater 26:3592–3617CrossRef
Zurück zum Zitat Xu F, Zhu Y (2012) Highly conductive and stretchable silver nanowire conductors. Adv Mater 24:5117–5122CrossRef Xu F, Zhu Y (2012) Highly conductive and stretchable silver nanowire conductors. Adv Mater 24:5117–5122CrossRef
Metadaten
Titel
Manufacturing methods of stretchable liquid metal-based antenna
verfasst von
Nathan Jackson
John Buckley
Cian Clarke
Frank Stam
Publikationsdatum
27.11.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 8/2019
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-4234-2

Weitere Artikel der Ausgabe 8/2019

Microsystem Technologies 8/2019 Zur Ausgabe

Neuer Inhalt