Skip to main content
Erschienen in: Rock Mechanics and Rock Engineering 3/2012

01.05.2012 | Original Paper

Linear Elastic and Cohesive Fracture Analysis to Model Hydraulic Fracture in Brittle and Ductile Rocks

verfasst von: Yao Yao

Erschienen in: Rock Mechanics and Rock Engineering | Ausgabe 3/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hydraulic fracturing technology is being widely used within the oil and gas industry for both waste injection and unconventional gas production wells. It is essential to predict the behavior of hydraulic fractures accurately based on understanding the fundamental mechanism(s). The prevailing approach for hydraulic fracture modeling continues to rely on computational methods based on Linear Elastic Fracture Mechanics (LEFM). Generally, these methods give reasonable predictions for hard rock hydraulic fracture processes, but still have inherent limitations, especially when fluid injection is performed in soft rock/sand or other non-conventional formations. These methods typically give very conservative predictions on fracture geometry and inaccurate estimation of required fracture pressure. One of the reasons the LEFM-based methods fail to give accurate predictions for these materials is that the fracture process zone ahead of the crack tip and softening effect should not be neglected in ductile rock fracture analysis. A 3D pore pressure cohesive zone model has been developed and applied to predict hydraulic fracturing under fluid injection. The cohesive zone method is a numerical tool developed to model crack initiation and growth in quasi-brittle materials considering the material softening effect. The pore pressure cohesive zone model has been applied to investigate the hydraulic fracture with different rock properties. The hydraulic fracture predictions of a three-layer water injection case have been compared using the pore pressure cohesive zone model with revised parameters, LEFM-based pseudo 3D model, a Perkins-Kern–Nordgren (PKN) model, and an analytical solution. Based on the size of the fracture process zone and its effect on crack extension in ductile rock, the fundamental mechanical difference of LEFM and cohesive fracture mechanics-based methods is discussed. An effective fracture toughness method has been proposed to consider the fracture process zone effect on the ductile rock fracture.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat ABAQUS user’s manual (2011) version 6.11, SIMULIA ABAQUS user’s manual (2011) version 6.11, SIMULIA
Zurück zum Zitat Bazant ZP, Planas J (1998) Fracture and size effect in concrete and other quasibrittle materials. CRC Press LLC, Boca Raton Bazant ZP, Planas J (1998) Fracture and size effect in concrete and other quasibrittle materials. CRC Press LLC, Boca Raton
Zurück zum Zitat Benzeggagh ML, Kenane M (1996) Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos Sci Tech 56:439–449CrossRef Benzeggagh ML, Kenane M (1996) Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos Sci Tech 56:439–449CrossRef
Zurück zum Zitat Dean RH, Schmidt JH (2009) Hydraulic fracture predictions with a fully coupled geomechanical reservoir simulator. Soc Petroleum Eng J 14(4):707–714 Dean RH, Schmidt JH (2009) Hydraulic fracture predictions with a fully coupled geomechanical reservoir simulator. Soc Petroleum Eng J 14(4):707–714
Zurück zum Zitat Hutchinson JW (1968) Singular behavior at the end of a tensile crack in a hardening material. J Mech Phys Solids 16:13–31CrossRef Hutchinson JW (1968) Singular behavior at the end of a tensile crack in a hardening material. J Mech Phys Solids 16:13–31CrossRef
Zurück zum Zitat Irwin GR (1957) Analysis of stresses and strain near the end of crack traversing a plate. J Appl Mech 24(3):361–364 Irwin GR (1957) Analysis of stresses and strain near the end of crack traversing a plate. J Appl Mech 24(3):361–364
Zurück zum Zitat Leung CKY, Li VC (1989) Determination of fracture toughness parameter of quasi-brittle materials with laboratory-size specimens. J Mater Sci 24(3):854–862CrossRef Leung CKY, Li VC (1989) Determination of fracture toughness parameter of quasi-brittle materials with laboratory-size specimens. J Mater Sci 24(3):854–862CrossRef
Zurück zum Zitat Lim IL, Johnston IW, Choi SK, Boland JN (1994) Fracture testing of a soft rock with semi-circular specimens under three-point bending Part 2—mixed mode. Int J Rock Mech Min Sci 31(3):199–212CrossRef Lim IL, Johnston IW, Choi SK, Boland JN (1994) Fracture testing of a soft rock with semi-circular specimens under three-point bending Part 2—mixed mode. Int J Rock Mech Min Sci 31(3):199–212CrossRef
Zurück zum Zitat Maier G, Bocciarelli M, Bolzon G, Fedele R (2006) Inverse analyses in fracture mechanics. Int J Frac 138(1):47–73CrossRef Maier G, Bocciarelli M, Bolzon G, Fedele R (2006) Inverse analyses in fracture mechanics. Int J Frac 138(1):47–73CrossRef
Zurück zum Zitat Martin AN (2000) Crack tip plasticity: a different approach to modelling fracture propagation in soft formations. In: Society of petroleum engineers annual technical conference and exhibition proceeding, SPE63171 Martin AN (2000) Crack tip plasticity: a different approach to modelling fracture propagation in soft formations. In: Society of petroleum engineers annual technical conference and exhibition proceeding, SPE63171
Zurück zum Zitat Nordgren RP (1972) A propagation of a vertical hydraulic fracture. Soc Petroleum Eng J 253:306–314 Nordgren RP (1972) A propagation of a vertical hydraulic fracture. Soc Petroleum Eng J 253:306–314
Zurück zum Zitat Perkins TK, Kern LR (1961) Width of hydraulic fractures. J Petroleum Tech 13(9):937–949 Perkins TK, Kern LR (1961) Width of hydraulic fractures. J Petroleum Tech 13(9):937–949
Zurück zum Zitat Rice JR, Rosengren GF (1968) Plane strain deformation near a crack tip in a power-law hardening material. J Mech Phys Solids 16:1–12CrossRef Rice JR, Rosengren GF (1968) Plane strain deformation near a crack tip in a power-law hardening material. J Mech Phys Solids 16:1–12CrossRef
Zurück zum Zitat Roe KL, Siegmund T (2003) An irreversible cohesive zone model for interface fatigue crack growth simulations. Eng Frac Mech 70:209–232CrossRef Roe KL, Siegmund T (2003) An irreversible cohesive zone model for interface fatigue crack growth simulations. Eng Frac Mech 70:209–232CrossRef
Zurück zum Zitat Saouma VE, Natekar D, Hansen E (2003) Cohesive stresses and size effects in elasto-plastic and quasi-brittle materials. Int J Frac 119(3):287–298CrossRef Saouma VE, Natekar D, Hansen E (2003) Cohesive stresses and size effects in elasto-plastic and quasi-brittle materials. Int J Frac 119(3):287–298CrossRef
Zurück zum Zitat Segura JM, Carol I (2010) Numerical modelling of pressurized fracture evolution in concrete using zero-thickness interface elements. Eng Frac Mech 77(9):1386–1399CrossRef Segura JM, Carol I (2010) Numerical modelling of pressurized fracture evolution in concrete using zero-thickness interface elements. Eng Frac Mech 77(9):1386–1399CrossRef
Zurück zum Zitat Valko P, Economides MJ (1995) Hydraulic fracture mechanics. Wiley, New Jersey Valko P, Economides MJ (1995) Hydraulic fracture mechanics. Wiley, New Jersey
Zurück zum Zitat van Dam DB, Papanastasiou P, de Pater CJ (2000) Impact of rock plasticity on hydraulic fracture propagation and closure. In: Society of petroleum engineers annual technical conference and exhibition proceeding, SPE63172 van Dam DB, Papanastasiou P, de Pater CJ (2000) Impact of rock plasticity on hydraulic fracture propagation and closure. In: Society of petroleum engineers annual technical conference and exhibition proceeding, SPE63172
Zurück zum Zitat Yao Y, Fine ME, Keer LM (2007) An energy approach to predict fatigue crack propagation in metals and alloys. Int J Frac 146(3):149–158CrossRef Yao Y, Fine ME, Keer LM (2007) An energy approach to predict fatigue crack propagation in metals and alloys. Int J Frac 146(3):149–158CrossRef
Metadaten
Titel
Linear Elastic and Cohesive Fracture Analysis to Model Hydraulic Fracture in Brittle and Ductile Rocks
verfasst von
Yao Yao
Publikationsdatum
01.05.2012
Verlag
Springer Vienna
Erschienen in
Rock Mechanics and Rock Engineering / Ausgabe 3/2012
Print ISSN: 0723-2632
Elektronische ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-011-0211-0

Weitere Artikel der Ausgabe 3/2012

Rock Mechanics and Rock Engineering 3/2012 Zur Ausgabe