Skip to main content
Erschienen in: Rock Mechanics and Rock Engineering 1/2013

01.01.2013 | Original Paper

Evolution of In Situ Rock Mass Damage Induced by Mechanical–Thermal Loading

verfasst von: Hengxing Lan, C. D. Martin, J. C. Andersson

Erschienen in: Rock Mechanics and Rock Engineering | Ausgabe 1/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To understand and predict the in situ brittle rock mass damage process induced by a coupled thermo-mechanical loading, the knowledge of rock mass yielding strength, scaling relationship between laboratory and in situ and microstructure characterization is required. Difficulties have been recognized due to the seldom availability of in situ experiment and appropriate numerical methodologies. The Äspö Pillar Stability Experiment was used to monitor the evolution of rock mass damage in a pillar of rock separating two 1.75-m diameter vertical boreholes. The loading of the pillar was controlled using the in situ stresses, excavation geometry, and locally increasing the rock temperature. The induced loading resulted in a complex discontinuum process that involved fracture initiation, propagation, interaction and buckling, all dominated by a tensile mechanism. Tracking this damage process was carried out in two steps. Initially, a three-dimensional numerical model was used to generate the stresses from the excavation geometry and thermal loading. The plane strain stresses, at selected locations where detailed displacement monitoring was available, were then used to track the evolution of damage caused by these induced stresses. The grain-based discrete element modeling approach described in Lan et al. (2010), which captures the grain scale heterogeneity of the rock, was used to establish the extent of damage. Good agreement was found between the predicted and measured temperatures and displacements. The grain-based model provided new insights into the progressive failure process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Andersson JC (2007) Äspö pillar stability experiment: rock mass response to coupled mechanical thermal loading, PhD thesis, R. Inst. of Technol., Stockholm Andersson JC (2007) Äspö pillar stability experiment: rock mass response to coupled mechanical thermal loading, PhD thesis, R. Inst. of Technol., Stockholm
Zurück zum Zitat Andersson JC, Martin CD (2003) Stress variability and the design of the Äspö Pillar Stability Experiment.Katsuhiko. In: Sugawara, Yuozo Obara, Akira Sato (eds) Proceedings of the 3rd international symposium on rock stress, RS Kumamoto ‘03, Kumamoto, pp 321–326 Andersson JC, Martin CD (2003) Stress variability and the design of the Äspö Pillar Stability Experiment.Katsuhiko. In: Sugawara, Yuozo Obara, Akira Sato (eds) Proceedings of the 3rd international symposium on rock stress, RS Kumamoto ‘03, Kumamoto, pp 321–326
Zurück zum Zitat Andersson JC, Martin CD (2009) The Äspö pillar stability experiment: part I—experiment design. Int J Rock Mech Min Sci 46:865–878CrossRef Andersson JC, Martin CD (2009) The Äspö pillar stability experiment: part I—experiment design. Int J Rock Mech Min Sci 46:865–878CrossRef
Zurück zum Zitat Andersson JC, Martin CD, Stille H (2009) The Äspö pillar stability experiment: part II—rock mass response to coupled excavation-induced and thermal-induced stresses. Int J Rock Mech Min Sci 46:879–895CrossRef Andersson JC, Martin CD, Stille H (2009) The Äspö pillar stability experiment: part II—rock mass response to coupled excavation-induced and thermal-induced stresses. Int J Rock Mech Min Sci 46:879–895CrossRef
Zurück zum Zitat Brace WF, Paulding BW, Scholz C (1966) Dilatancy in the fracture of crystalline rocks. J Geophys Res 71(16):3939–3953CrossRef Brace WF, Paulding BW, Scholz C (1966) Dilatancy in the fracture of crystalline rocks. J Geophys Res 71(16):3939–3953CrossRef
Zurück zum Zitat Cai M (2011) Rock mass characterization and rock property variability considerations for tunnel and cavern design. Rock Mech Rock Eng 44:379–399CrossRef Cai M (2011) Rock mass characterization and rock property variability considerations for tunnel and cavern design. Rock Mech Rock Eng 44:379–399CrossRef
Zurück zum Zitat Diederichs MS (2007) The 2003 canadian geotechnical colloquium mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunneling. Can Geotech J 44:1082–1116CrossRef Diederichs MS (2007) The 2003 canadian geotechnical colloquium mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunneling. Can Geotech J 44:1082–1116CrossRef
Zurück zum Zitat Hakami H (2003) Äspö hard rock laboratory. Update of the rock mechanical model 2002, SKBReport IPR-03-37 Hakami H (2003) Äspö hard rock laboratory. Update of the rock mechanical model 2002, SKBReport IPR-03-37
Zurück zum Zitat Hallbauer DK, Wagner H, Cook NGW (1973) Some observations concerning the microscopic and mechanical behaviour of quartzite specimens in stiff, triaxial compression tests. Int J Rock Mech Min Sci Geomech Abstr 10:713–726. doi:10.1016/0148-9062(73)90015-6 CrossRef Hallbauer DK, Wagner H, Cook NGW (1973) Some observations concerning the microscopic and mechanical behaviour of quartzite specimens in stiff, triaxial compression tests. Int J Rock Mech Min Sci Geomech Abstr 10:713–726. doi:10.​1016/​0148-9062(73)90015-6 CrossRef
Zurück zum Zitat Heap MJ, Baud P, Meredith PG, Vinciguerra S, Bell AF, Main IG (2011) Brittle creep in basalt and its application to time-dependent volcano deformation. Earth Planet Sci Lett 307:71–82CrossRef Heap MJ, Baud P, Meredith PG, Vinciguerra S, Bell AF, Main IG (2011) Brittle creep in basalt and its application to time-dependent volcano deformation. Earth Planet Sci Lett 307:71–82CrossRef
Zurück zum Zitat Itasca Consulting Group Inc. (2007) 3DEC (3 dimensional distinct element code), version 4.10, In: Optional features volume, thermal option. Minneapolis Itasca Consulting Group Inc. (2007) 3DEC (3 dimensional distinct element code), version 4.10, In: Optional features volume, thermal option. Minneapolis
Zurück zum Zitat Lan H, Martin CD, Hu B (2010) Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading. J Geophys Res 115:B01202. doi:10.1029/2009JB006496 CrossRef Lan H, Martin CD, Hu B (2010) Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading. J Geophys Res 115:B01202. doi:10.​1029/​2009JB006496 CrossRef
Zurück zum Zitat Martin CD (1997) Seventeenth Canadian geotechnical colloquium: the effect of cohesion loss and stress path on brittle rock strength. Can Geotech J 34:698–725 Martin CD (1997) Seventeenth Canadian geotechnical colloquium: the effect of cohesion loss and stress path on brittle rock strength. Can Geotech J 34:698–725
Zurück zum Zitat Martin CD, Read RS (1996) AECL’s Mine-by experiment: a test tunnel in brittle rock. In: Aubertin M, Hassani F, Mitri H (eds) Proceedings of the 2nd North American Rock mechanics symposium, Montreal, A.A. Balkema, Rotterdam, pp 13–24 Martin CD, Read RS (1996) AECL’s Mine-by experiment: a test tunnel in brittle rock. In: Aubertin M, Hassani F, Mitri H (eds) Proceedings of the 2nd North American Rock mechanics symposium, Montreal, A.A. Balkema, Rotterdam, pp 13–24
Zurück zum Zitat Misra S, Mandal N, Dhar R, Chakraborty C (2009) Mechanisms of deformation localization at the tips of shear fractures: findings from analogue experiments and field evidence. J Geophys Res 114:B04204. doi:10.1029/2008JB005737 CrossRef Misra S, Mandal N, Dhar R, Chakraborty C (2009) Mechanisms of deformation localization at the tips of shear fractures: findings from analogue experiments and field evidence. J Geophys Res 114:B04204. doi:10.​1029/​2008JB005737 CrossRef
Zurück zum Zitat Read RS (2004) 20 years of excavation response studies at AECL’s Underground Research Laboratory. Int J Rcok Mech Min Sci 41:1251–1275CrossRef Read RS (2004) 20 years of excavation response studies at AECL’s Underground Research Laboratory. Int J Rcok Mech Min Sci 41:1251–1275CrossRef
Zurück zum Zitat Staub I, Andersson JC (2004) Äspö pillar stability experiment geology and mechanical properties of the rock in TASQ, SKB Rep. R-04-01, Svensk Ka¨rnbra¨nslehantering AB, Stockholm Staub I, Andersson JC (2004) Äspö pillar stability experiment geology and mechanical properties of the rock in TASQ, SKB Rep. R-04-01, Svensk Ka¨rnbra¨nslehantering AB, Stockholm
Zurück zum Zitat Thompson BD, Young RP, Lockner DA (2006) Fracture in Westerly granite under AE feedback and constant strain rate loading: nucleation, quasi-static propagation, and the transition to unstable fracture propagation. Pure Appl Geophys 163:995–1019. doi:10.1007/s00024-006-0054-x CrossRef Thompson BD, Young RP, Lockner DA (2006) Fracture in Westerly granite under AE feedback and constant strain rate loading: nucleation, quasi-static propagation, and the transition to unstable fracture propagation. Pure Appl Geophys 163:995–1019. doi:10.​1007/​s00024-006-0054-x CrossRef
Zurück zum Zitat Wawersik WR, Brace WF (1971) Post failure behaviour of a granite and diabase. Rock Mech Rock Eng 3:61–85 Wawersik WR, Brace WF (1971) Post failure behaviour of a granite and diabase. Rock Mech Rock Eng 3:61–85
Zurück zum Zitat Zang A, Wanger FC (2000). Fracture process zone in granite. J Geophys Res 105(B10):23651–23661 Zang A, Wanger FC (2000). Fracture process zone in granite. J Geophys Res 105(B10):23651–23661
Metadaten
Titel
Evolution of In Situ Rock Mass Damage Induced by Mechanical–Thermal Loading
verfasst von
Hengxing Lan
C. D. Martin
J. C. Andersson
Publikationsdatum
01.01.2013
Verlag
Springer Vienna
Erschienen in
Rock Mechanics and Rock Engineering / Ausgabe 1/2013
Print ISSN: 0723-2632
Elektronische ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-012-0248-8

Weitere Artikel der Ausgabe 1/2013

Rock Mechanics and Rock Engineering 1/2013 Zur Ausgabe