Skip to main content
Erschienen in: Hydrogeology Journal 3/2016

01.05.2016 | Essay

From documentation to prediction: raising the bar for thermokarst research

verfasst von: Joel C. Rowland, Ethan T. Coon

Erschienen in: Hydrogeology Journal | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Excerpt

Rapid warming in the Arctic and the resulting loss of permafrost have caused dramatic changes in Arctic landscapes through thermokarst activity. Thermokarst refers to subsidence of the land surface driven not by chemical dissolution of material but instead by the phase change of ice to water in the subsurface (French 2007). Subsidence arising from this phase change may result from several related processes: (1) the loss of volume due to the phase change of ice to water; (2) the compaction and settling of soil grains no longer supported by ice; (3) compaction of soil matrix due to the loss of pore pressures and water volume resulting from drainage of fluid from the unfrozen soil matrix; and (4) to a much smaller and slower extent, the loss of organic material due to increased microbial degradation under unfrozen conditions. Understanding of the first three of these processes requires quantification of coupled thermal, hydrological, and mechanical processes in the thawing soils and bulk ice. Freeze-thaw processes during annual cycles in the active layer may result in recoverable subsidence as pore water refreezes, resulting in cryosuction and frost heave. Non-recoverable subsidence is typically of greater interest and importance to infrastructure, local hydrology, and biogeochemical feedbacks (Kokelj and Jorgenson 2013). This land surface deformation occurs due to melting of bulk ice, either in ice wedges (large vertically oriented ice inclusions) or ice lenses (thin, horizontally oriented ice layers), or as previously unfrozen ice-rich soil loses the structural support of ice. …

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Atchley AL, Painter SL, Harp DR et al (2015) Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83). Geosci Model Dev Discuss 8:3235–3292. doi:10.5194/gmdd-8-3235-2015 CrossRef Atchley AL, Painter SL, Harp DR et al (2015) Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83). Geosci Model Dev Discuss 8:3235–3292. doi:10.​5194/​gmdd-8-3235-2015 CrossRef
Zurück zum Zitat Endrizzi S, Gruber S, Dall’Amico M, Rigon R (2014) GEOtop 2.0: simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects. Geosci Model Dev 7:2831–2857. doi:10.5194/gmd-7-2831-2014 CrossRef Endrizzi S, Gruber S, Dall’Amico M, Rigon R (2014) GEOtop 2.0: simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects. Geosci Model Dev 7:2831–2857. doi:10.​5194/​gmd-7-2831-2014 CrossRef
Zurück zum Zitat Fredlund DG, Hasan JU (1979) One-dimensional consolidation theory: unsaturated soils. Can Geotech J 16:521–531. doi:10.1139/t79-058 Fredlund DG, Hasan JU (1979) One-dimensional consolidation theory: unsaturated soils. Can Geotech J 16:521–531. doi:10.​1139/​t79-058
Zurück zum Zitat Grenier C, Régnier D, Mouche E et al (2013) Impact of permafrost development on groundwater flow patterns: a numerical study considering freezing cycles on a two-dimensional vertical cut through a generic river–plain system. Hydrogeol J 21:257–270. doi:10.1007/s10040-012-0909-4 CrossRef Grenier C, Régnier D, Mouche E et al (2013) Impact of permafrost development on groundwater flow patterns: a numerical study considering freezing cycles on a two-dimensional vertical cut through a generic river–plain system. Hydrogeol J 21:257–270. doi:10.​1007/​s10040-012-0909-4 CrossRef
Zurück zum Zitat Grosse G, Jones B, Arp C (2013) 8.21 Thermokarst lakes, drainage, and drained basins. In: Treatise on geomorphology. Elsevier, Amsterdam, pp 325–353 Grosse G, Jones B, Arp C (2013) 8.21 Thermokarst lakes, drainage, and drained basins. In: Treatise on geomorphology. Elsevier, Amsterdam, pp 325–353
Zurück zum Zitat Hinzman LD, Goering DJ, Kane DL (1998) A distributed thermal model for calculating soil temperature profiles and depth of thaw in permafrost regions. J Geophys Res Atmos 103:28975–28991. doi:10.1029/98JD01731 CrossRef Hinzman LD, Goering DJ, Kane DL (1998) A distributed thermal model for calculating soil temperature profiles and depth of thaw in permafrost regions. J Geophys Res Atmos 103:28975–28991. doi:10.​1029/​98JD01731 CrossRef
Zurück zum Zitat Jorgenson MT, Romanovsky V, Harden J et al (2010) Resilience and vulnerability of permafrost to climate change. In: The dynamics of change in Alaska’s boreal forests: resilience and vulnerability in response to climate warming. Can J For Res 40:1219–1236. doi:10.1139/X10-060 CrossRef Jorgenson MT, Romanovsky V, Harden J et al (2010) Resilience and vulnerability of permafrost to climate change. In: The dynamics of change in Alaska’s boreal forests: resilience and vulnerability in response to climate warming. Can J For Res 40:1219–1236. doi:10.​1139/​X10-060 CrossRef
Zurück zum Zitat Kessler MA, Plug LJ, Walter Anthony KM (2012) Simulating the decadal- to millennial-scale dynamics of morphology and sequestered carbon mobilization of two thermokarst lakes in NW Alaska. J Geophys Res Biogeosci 117:G00M06. doi:10.1029/2011JG001796 Kessler MA, Plug LJ, Walter Anthony KM (2012) Simulating the decadal- to millennial-scale dynamics of morphology and sequestered carbon mobilization of two thermokarst lakes in NW Alaska. J Geophys Res Biogeosci 117:G00M06. doi:10.​1029/​2011JG001796
Zurück zum Zitat Kurylyk BL, McKenzie JM, MacQuarrie KTB, Voss CI (2014) Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: one-dimensional soil thaw with conduction and advection. Adv Water Resour 70:13. doi:10.1016/j.advwatres.2014.05.005 Kurylyk BL, McKenzie JM, MacQuarrie KTB, Voss CI (2014) Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: one-dimensional soil thaw with conduction and advection. Adv Water Resour 70:13. doi:10.​1016/​j.​advwatres.​2014.​05.​005
Zurück zum Zitat Lantz TC, Kokelj SV (2008) Increasing rates of retrogressive thaw slump activity in the Mackenzie Delta region, N.W.T., Canada. Geophys Res Lett 35:L06502. doi:10.1029/2007GL032433 CrossRef Lantz TC, Kokelj SV (2008) Increasing rates of retrogressive thaw slump activity in the Mackenzie Delta region, N.W.T., Canada. Geophys Res Lett 35:L06502. doi:10.​1029/​2007GL032433 CrossRef
Zurück zum Zitat Lara MJ, McGuire AD, Euskirchen ES et al (2015) Polygonal tundra geomorphological change in response to warming alters future CO2 and CH4 flux on the Barrow Peninsula. Glob Change Biol 21:1634–1651. doi:10.1111/gcb.12757 CrossRef Lara MJ, McGuire AD, Euskirchen ES et al (2015) Polygonal tundra geomorphological change in response to warming alters future CO2 and CH4 flux on the Barrow Peninsula. Glob Change Biol 21:1634–1651. doi:10.​1111/​gcb.​12757 CrossRef
Zurück zum Zitat Lewis KC, Zyvoloski GA, Travis B et al (2012) Drainage subsidence associated with Arctic permafrost degradation. J Geophys Res Earth Surf 117:F04019. doi:10.1029/2011JF002284 Lewis KC, Zyvoloski GA, Travis B et al (2012) Drainage subsidence associated with Arctic permafrost degradation. J Geophys Res Earth Surf 117:F04019. doi:10.​1029/​2011JF002284
Zurück zum Zitat Ling F, Zhang T (2003) Numerical simulation of permafrost thermal regime and talik development under shallow thaw lakes on the Alaskan Arctic Coastal Plain. J Geophys Res Atmos 108:4511. doi:10.1029/2002JD003014 CrossRef Ling F, Zhang T (2003) Numerical simulation of permafrost thermal regime and talik development under shallow thaw lakes on the Alaskan Arctic Coastal Plain. J Geophys Res Atmos 108:4511. doi:10.​1029/​2002JD003014 CrossRef
Zurück zum Zitat Liu L, Zhang T, Wahr J (2010) InSAR measurements of surface deformation over permafrost on the North Slope of Alaska. J Geophys Res Earth Surf 115:F03023. doi:10.1029/2009JF001547 Liu L, Zhang T, Wahr J (2010) InSAR measurements of surface deformation over permafrost on the North Slope of Alaska. J Geophys Res Earth Surf 115:F03023. doi:10.​1029/​2009JF001547
Zurück zum Zitat Liu L, Jafarov EE, Schaefer KM et al (2014) InSAR detects increase in surface subsidence caused by an Arctic tundra fire. Geophys Res Lett 41:2014GL060533. doi:10.1002/2014GL060533 Liu L, Jafarov EE, Schaefer KM et al (2014) InSAR detects increase in surface subsidence caused by an Arctic tundra fire. Geophys Res Lett 41:2014GL060533. doi:10.​1002/​2014GL060533
Zurück zum Zitat Liu L, Schaefer KM, Chen AC et al (2015) Remote sensing measurements of thermokarst subsidence using InSAR. J Geophys Res Earth Surf. doi:10.1002/2015JF003599 Liu L, Schaefer KM, Chen AC et al (2015) Remote sensing measurements of thermokarst subsidence using InSAR. J Geophys Res Earth Surf. doi:10.​1002/​2015JF003599
Zurück zum Zitat Lunardini VJ (1991) Heat transfer with freezing and thawing, 1st edn. Elsevier, New York Lunardini VJ (1991) Heat transfer with freezing and thawing, 1st edn. Elsevier, New York
Zurück zum Zitat Plug LJ, West JJ (2009) Thaw lake expansion in a two-dimensional coupled model of heat transfer, thaw subsidence, and mass movement. J Geophys Res Earth Surf 114:F01002. doi:10.1029/2006JF000740 Plug LJ, West JJ (2009) Thaw lake expansion in a two-dimensional coupled model of heat transfer, thaw subsidence, and mass movement. J Geophys Res Earth Surf 114:F01002. doi:10.​1029/​2006JF000740
Zurück zum Zitat Romanovsky VE, Osterkamp TE, Duxbury NS (1997) An evaluation of three numerical models used in simulations of the active layer and permafrost temperature regimes. Cold Reg Sci Technol 26:195–203. doi:10.1016/S0165-232X(97)00016-5 CrossRef Romanovsky VE, Osterkamp TE, Duxbury NS (1997) An evaluation of three numerical models used in simulations of the active layer and permafrost temperature regimes. Cold Reg Sci Technol 26:195–203. doi:10.​1016/​S0165-232X(97)00016-5 CrossRef
Zurück zum Zitat Rowland JC, Travis BJ, Wilson CJ (2011) The role of advective heat transport in talik development beneath lakes and ponds in discontinuous permafrost. Geophys Res Lett 38:L17504. doi:10.1029/2011GL048497 CrossRef Rowland JC, Travis BJ, Wilson CJ (2011) The role of advective heat transport in talik development beneath lakes and ponds in discontinuous permafrost. Geophys Res Lett 38:L17504. doi:10.​1029/​2011GL048497 CrossRef
Zurück zum Zitat Schrefler B (2002) Mechanics and thermodynamics of saturated/unsaturated porous materials and quantitative solutions. Appl Mech Rev 55:4. doi:10.1115/1.1484107 Schrefler B (2002) Mechanics and thermodynamics of saturated/unsaturated porous materials and quantitative solutions. Appl Mech Rev 55:4. doi:10.​1115/​1.​1484107
Zurück zum Zitat van Huissteden J, Berrittella C, Parmentier FJW et al (2011) Methane emissions from permafrost thaw lakes limited by lake drainage. Nat Clim Change 1:119–123. doi:10.1038/nclimate1101 CrossRef van Huissteden J, Berrittella C, Parmentier FJW et al (2011) Methane emissions from permafrost thaw lakes limited by lake drainage. Nat Clim Change 1:119–123. doi:10.​1038/​nclimate1101 CrossRef
Zurück zum Zitat Wu Y, Hubbard SS, Ulrich C, Wullschleger SD (2013) Remote monitoring of freeze–thaw transitions in arctic soils using the complex resistivity method. Vadose Zone J 12:0. doi:10.2136/vzj2012.0062 Wu Y, Hubbard SS, Ulrich C, Wullschleger SD (2013) Remote monitoring of freeze–thaw transitions in arctic soils using the complex resistivity method. Vadose Zone J 12:0. doi:10.​2136/​vzj2012.​0062
Zurück zum Zitat Yi S, Wischnewski K, Langer M et al (2014) Freeze/thaw processes in complex permafrost landscapes of northern Siberia simulated using the TEM ecosystem model: impact of thermokarst ponds and lakes. Geosci Model Dev 7:1671–1689. doi:10.5194/gmd-7-1671-2014 CrossRef Yi S, Wischnewski K, Langer M et al (2014) Freeze/thaw processes in complex permafrost landscapes of northern Siberia simulated using the TEM ecosystem model: impact of thermokarst ponds and lakes. Geosci Model Dev 7:1671–1689. doi:10.​5194/​gmd-7-1671-2014 CrossRef
Zurück zum Zitat Zhang Y, Carey SK, Quinton WL (2008) Evaluation of the algorithms and parameterizations for ground thawing and freezing simulation in permafrost regions. J Geophys Res Atmos 113:D17116. doi:10.1029/2007JD009343 CrossRef Zhang Y, Carey SK, Quinton WL (2008) Evaluation of the algorithms and parameterizations for ground thawing and freezing simulation in permafrost regions. J Geophys Res Atmos 113:D17116. doi:10.​1029/​2007JD009343 CrossRef
Metadaten
Titel
From documentation to prediction: raising the bar for thermokarst research
verfasst von
Joel C. Rowland
Ethan T. Coon
Publikationsdatum
01.05.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Hydrogeology Journal / Ausgabe 3/2016
Print ISSN: 1431-2174
Elektronische ISSN: 1435-0157
DOI
https://doi.org/10.1007/s10040-015-1331-5

Weitere Artikel der Ausgabe 3/2016

Hydrogeology Journal 3/2016 Zur Ausgabe