Skip to main content
Erschienen in: Hydrogeology Journal 1/2019

06.09.2018 | Paper

Characterization of spatially variable riverbed hydraulic conductivity using electrical resistivity tomography and induced polarization

verfasst von: Sien Benoit, Gert Ghysels, Kevin Gommers, Thomas Hermans, Frederic Nguyen, Marijke Huysmans

Erschienen in: Hydrogeology Journal | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The spatial distribution of hydraulic conductivity (K) in riverbeds is essential to understand and model river–groundwater interactions. However, K in riverbeds varies over several orders of magnitude and its spatial distribution is closely linked to complex geological and fluvial processes. Investigating the local distribution and spatial heterogeneity of K is therefore a challenging task. The use of direct current (DC) and time-domain-induced polarization (IP) geoelectrical methods to map qualitatively the spatial distribution of K within riverbeds is described. The approach is demonstrated for a test site situated in a typical lowland river in Belgium. Inverted geophysical parameters (resistivity, chargeability and normalized chargeability) are compared with estimates of K obtained through slug tests. In general, high values of K are observed in the middle of the river and lower values towards the banks, while the opposite is true for chargeability and normalized chargeability. Therefore, there exists an inverse correlation between K and IP geophysical parameters. Furthermore, geostatistical analyses using variograms show that all parameters have ranges of similar magnitudes. The strong correlation between K and chargeability or normalized chargeability can be explained by the fact that all three parameters are mainly controlled by clay and organic matter content.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Anibas C, Schneidewind U, Vandersteen G, Joris I (2016) From streambed temperature measurements to spatial–temporal flux quantification: using the LPML method to study groundwater–surface water interaction. 216(July 2015):203–216. https://doi.org/10.1002/hyp.10588 Anibas C, Schneidewind U, Vandersteen G, Joris I (2016) From streambed temperature measurements to spatial–temporal flux quantification: using the LPML method to study groundwater–surface water interaction. 216(July 2015):203–216. https://​doi.​org/​10.​1002/​hyp.​10588
Zurück zum Zitat Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Min Metall Pet Eng 146:54–62 Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Min Metall Pet Eng 146:54–62
Zurück zum Zitat Bal K, Meire P (2009) The influence of macrophyte cutting on the hydraulic resistance of lowland rivers. J Aquat Plant Manag 47:65–68 Bal K, Meire P (2009) The influence of macrophyte cutting on the hydraulic resistance of lowland rivers. J Aquat Plant Manag 47:65–68
Zurück zum Zitat Barker JA, Black JH (1983) Slug tests in fissured aquifers. Water Resour Res 19(6):1558CrossRef Barker JA, Black JH (1983) Slug tests in fissured aquifers. Water Resour Res 19(6):1558CrossRef
Zurück zum Zitat Batu V (1998) Aquifer hydraulics: a comprehensive guide to hydrogeologic data analysis. Wiley, New York, 727 pp Batu V (1998) Aquifer hydraulics: a comprehensive guide to hydrogeologic data analysis. Wiley, New York, 727 pp
Zurück zum Zitat Bouwer H, Rice RC (1976) A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour Res 12:423–428CrossRef Bouwer H, Rice RC (1976) A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour Res 12:423–428CrossRef
Zurück zum Zitat Brunner P, Therrien R, Renard P, Simmons CT, Franssen HJH (2017) Advances in understanding river–groundwater interactions. Rev Geophys 55(3):818–854CrossRef Brunner P, Therrien R, Renard P, Simmons CT, Franssen HJH (2017) Advances in understanding river–groundwater interactions. Rev Geophys 55(3):818–854CrossRef
Zurück zum Zitat Butler JJ (1996) Slug tests in site characterization: some practical considerations. Environ Geosci 3(3):154–163 Butler JJ (1996) Slug tests in site characterization: some practical considerations. Environ Geosci 3(3):154–163
Zurück zum Zitat Butler JJ (1998) The design, performance, and analysis of slug tests. Lewis, New York Butler JJ (1998) The design, performance, and analysis of slug tests. Lewis, New York
Zurück zum Zitat Calver A (2001) Riverbed Permeabilities: information from pooled data. Ground Water 39(4):546–553CrossRef Calver A (2001) Riverbed Permeabilities: information from pooled data. Ground Water 39(4):546–553CrossRef
Zurück zum Zitat Caterina D, Beaujean J, Robert T, Nguyen F (2013) A comparison study of different image appraisal tools for electrical resistivity tomography. Near Surf Geophys 11(6):639–657CrossRef Caterina D, Beaujean J, Robert T, Nguyen F (2013) A comparison study of different image appraisal tools for electrical resistivity tomography. Near Surf Geophys 11(6):639–657CrossRef
Zurück zum Zitat Caterina D, Hermans T, Nguyen F (2014) Case studies of incorporation of prior information in electrical resistivity tomography: comparison of different approaches. Near Surf Geophys 12:451–465CrossRef Caterina D, Hermans T, Nguyen F (2014) Case studies of incorporation of prior information in electrical resistivity tomography: comparison of different approaches. Near Surf Geophys 12:451–465CrossRef
Zurück zum Zitat deGroot-Hedlin C, Constable S (1990) Occam’s inversion to generate smooth, two-dimensional models form magnetotelluric data. Geophysics 55:1613–1624CrossRef deGroot-Hedlin C, Constable S (1990) Occam’s inversion to generate smooth, two-dimensional models form magnetotelluric data. Geophysics 55:1613–1624CrossRef
Zurück zum Zitat Doetsch J, Linde N, Coscia I, Greenhalgh SA, Green AG (2010) Zonation for 3D aquifer characterization based on joint inversions of multimethod cross hole geophysical data. Geophysics 75(6):G53–G64CrossRef Doetsch J, Linde N, Coscia I, Greenhalgh SA, Green AG (2010) Zonation for 3D aquifer characterization based on joint inversions of multimethod cross hole geophysical data. Geophysics 75(6):G53–G64CrossRef
Zurück zum Zitat Edwards N (2005) Marine controlled source electromagnetics: principles, methodologies, future commercial applications. Surv Geophys 26(6):675–700CrossRef Edwards N (2005) Marine controlled source electromagnetics: principles, methodologies, future commercial applications. Surv Geophys 26(6):675–700CrossRef
Zurück zum Zitat Gelhar LW (1993) Stochastic subsurface hydrology. Prentice-Hall, Old Tappan, NJ Gelhar LW (1993) Stochastic subsurface hydrology. Prentice-Hall, Old Tappan, NJ
Zurück zum Zitat Ghysels G, Benoit S, Awol H, Jensen EP, Tolche AD, Anibas C, Huysmans M (2018) Characterization of meter-scale spatial variability of riverbed hydraulic conductivity in a low-land river (Aa River, Belgium). J Hydrol 559:1013–1027CrossRef Ghysels G, Benoit S, Awol H, Jensen EP, Tolche AD, Anibas C, Huysmans M (2018) Characterization of meter-scale spatial variability of riverbed hydraulic conductivity in a low-land river (Aa River, Belgium). J Hydrol 559:1013–1027CrossRef
Zurück zum Zitat Gottschalk I, Hermans T, Knight R, Caers J, Cameron D, Regnery J, McCray J (2017) Integrating non-colocated well and geophysical data to capture subsurface heterogeneity at an aquifer recharge and recovery site. J Hydrol 555:407–419CrossRef Gottschalk I, Hermans T, Knight R, Caers J, Cameron D, Regnery J, McCray J (2017) Integrating non-colocated well and geophysical data to capture subsurface heterogeneity at an aquifer recharge and recovery site. J Hydrol 555:407–419CrossRef
Zurück zum Zitat Hermans T, Irving J (2017) Facies discrimination with electrical resistivity tomography using a probabilistic methodology: effect of sensitivity and regularisation. Near Surf Geophys 15:13–25 Hermans T, Irving J (2017) Facies discrimination with electrical resistivity tomography using a probabilistic methodology: effect of sensitivity and regularisation. Near Surf Geophys 15:13–25
Zurück zum Zitat Kalbus E, Schmidt C, Molson JW, Reinstorf F, Schirmer M (2009) Influence of aquifer and streambed heterogeneity on the distribution of groundwater discharge. Hydrol Earth Syst Sci 13(1):69–77CrossRef Kalbus E, Schmidt C, Molson JW, Reinstorf F, Schirmer M (2009) Influence of aquifer and streambed heterogeneity on the distribution of groundwater discharge. Hydrol Earth Syst Sci 13(1):69–77CrossRef
Zurück zum Zitat Kelly WE (1977) Geoelectric sounding for estimation aquifer hydraulic conductivity. Ground Water 15(6):420–425CrossRef Kelly WE (1977) Geoelectric sounding for estimation aquifer hydraulic conductivity. Ground Water 15(6):420–425CrossRef
Zurück zum Zitat Landon MK, Rus DL, Harvey FE, Landonj MK, Rusl DL, Harvey FE (2001) Comparison of instream methods for measuring hydraulic conductivity in sandy streambeds. Ground Water 39(6):870–885CrossRef Landon MK, Rus DL, Harvey FE, Landonj MK, Rusl DL, Harvey FE (2001) Comparison of instream methods for measuring hydraulic conductivity in sandy streambeds. Ground Water 39(6):870–885CrossRef
Zurück zum Zitat Loke MH, Lane JH (2004) Inversion of data from electrical resistivity imaging surveys in water-covered areas. Explor Geophys 35(4):266–271CrossRef Loke MH, Lane JH (2004) Inversion of data from electrical resistivity imaging surveys in water-covered areas. Explor Geophys 35(4):266–271CrossRef
Zurück zum Zitat Loke MH, Acworth I, Dahlin T (2003) A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Explor Geophys 34:182–187CrossRef Loke MH, Acworth I, Dahlin T (2003) A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Explor Geophys 34:182–187CrossRef
Zurück zum Zitat Oldenburg DW, Li YG (1999) Estimating depth of investigation in dc resistivity and IP surveys. Geophysics 64(2):403–416CrossRef Oldenburg DW, Li YG (1999) Estimating depth of investigation in dc resistivity and IP surveys. Geophysics 64(2):403–416CrossRef
Zurück zum Zitat Purvance DT, Andricevic R (2000) On the electrical-hydraulic conductivity correlation in aquifers. Water Resour Res 36:2905–2913CrossRef Purvance DT, Andricevic R (2000) On the electrical-hydraulic conductivity correlation in aquifers. Water Resour Res 36:2905–2913CrossRef
Zurück zum Zitat Ramey HJ Jr, Agarwal RG, Martin I (1975) Analysis of “slug test” or DST flow period date. J Can Pet Technol 14:53CrossRef Ramey HJ Jr, Agarwal RG, Martin I (1975) Analysis of “slug test” or DST flow period date. J Can Pet Technol 14:53CrossRef
Zurück zum Zitat Remy N (2004) S-GeMS: the Stanford geostatistical modeling software: a tool for new algorithms development. Quantitat Geol Geostatist 14:865–871 Remy N (2004) S-GeMS: the Stanford geostatistical modeling software: a tool for new algorithms development. Quantitat Geol Geostatist 14:865–871
Zurück zum Zitat Revil A, Cathles LMI (1999) Permeability of shaly sands. Water Resour Res 35(3):651–662CrossRef Revil A, Cathles LMI (1999) Permeability of shaly sands. Water Resour Res 35(3):651–662CrossRef
Zurück zum Zitat Schön JH (1996) Physical properties of rocks: fundamentals and principles of petrophysics. In: Handbook of geophysical exploration: seismic exploration, 18. Pergamon, Oxford, UK Schön JH (1996) Physical properties of rocks: fundamentals and principles of petrophysics. In: Handbook of geophysical exploration: seismic exploration, 18. Pergamon, Oxford, UK
Zurück zum Zitat Sebok E, Duque C, Engesgaard P, Boegh E (2014) Spatial variability in streambed hydraulic conductivity of contrasting stream morphologies: channel bend and straight channel. Hydrogeol J 25(5):1283–1299. https://doi.org/10.1002/hyp.10170 Sebok E, Duque C, Engesgaard P, Boegh E (2014) Spatial variability in streambed hydraulic conductivity of contrasting stream morphologies: channel bend and straight channel. Hydrogeol J 25(5):1283–1299. https://​doi.​org/​10.​1002/​hyp.​10170
Zurück zum Zitat Yadav GS, Abolfazli H (1998) Geoelectrical soundings and their relationship to hydraulic parameters in semiarid regions of Jalore, northwestern India. J Appl Geophys 39:35–51CrossRef Yadav GS, Abolfazli H (1998) Geoelectrical soundings and their relationship to hydraulic parameters in semiarid regions of Jalore, northwestern India. J Appl Geophys 39:35–51CrossRef
Metadaten
Titel
Characterization of spatially variable riverbed hydraulic conductivity using electrical resistivity tomography and induced polarization
verfasst von
Sien Benoit
Gert Ghysels
Kevin Gommers
Thomas Hermans
Frederic Nguyen
Marijke Huysmans
Publikationsdatum
06.09.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Hydrogeology Journal / Ausgabe 1/2019
Print ISSN: 1431-2174
Elektronische ISSN: 1435-0157
DOI
https://doi.org/10.1007/s10040-018-1862-7

Weitere Artikel der Ausgabe 1/2019

Hydrogeology Journal 1/2019 Zur Ausgabe