Skip to main content
Erschienen in: Bulletin of Engineering Geology and the Environment 3/2019

01.02.2018 | Case history

Dynamical process of the Hongshiyan landslide induced by the 2014 Ludian earthquake and stability evaluation of the back scarp of the remnant slope

verfasst von: Hai-Bo Li, Xiao-Wen Li, Yu Ning, Shu-Fang Jiang, Jia-Wen Zhou

Erschienen in: Bulletin of Engineering Geology and the Environment | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Reinforcing a landslide dam and converting a landslide-dammed lake to a hydraulically engineered lake is a sound means to address this natural disaster. The Hongshiyan landslide-dammed lake reconstruction project provides an excellent example. However, the stability of the remnant slope is crucial to the reconstruction of this project. It is essential to analyse the formation failure mechanisms of the Hongshiyan landslide and evaluate the stability of the remnant slope. Combined with field investigations and unmanned aerial vehicle (UAV) 3D image technologies, the failure mechanisms of the Hongshiyan landslide and the stability of the remnant slope were qualitatively studied and discussed. The dynamic process and failure mechanism of the Hongshiyan landslide are significantly different to conventional landslides. The dynamic process of the Hongshiyan landslide can be divided into three stages: time-dependent deformation stage, earthquake-induced failure stage and an unloading recovery stage. The failure mechanism can be summarised as follows: tension–crush–shattering–sliding. The stability conditions of the remnant slope are worse than those of conventional landslides under the same conditions. Toppling and small collapse are possibly occurring at the back scarp of the remnant slope because of the steep slope gradient, well-developed tension fractures and frequent occurrence of aftershocks and rainstorms. Based on the density, opening degree, porosity and connectivity of the cracks, as well as instability risk probabilities, the rock mass of the back scarp of the remnant slope can be divided into three zones: the seismically damaged zone, the unloading damaged zone and the stable zone. To guarantee the safety of the remnant slope and reduce secondary earthquake or rainstorm disasters, corresponding comprehensive treatment measures must be taken to ensure long-term stability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alejano LR, Gómez-Márquez I, Martínez-Alegría R (2010) Analysis of a complex toppling-circular slope failure. Eng Geol 114(1):93–104CrossRef Alejano LR, Gómez-Márquez I, Martínez-Alegría R (2010) Analysis of a complex toppling-circular slope failure. Eng Geol 114(1):93–104CrossRef
Zurück zum Zitat Ambraseys N, Srbulov M (1995) Earthquake induced displacements of slopes. Soil Dyn Earthq Eng 14:59–71CrossRef Ambraseys N, Srbulov M (1995) Earthquake induced displacements of slopes. Soil Dyn Earthq Eng 14:59–71CrossRef
Zurück zum Zitat Ashford SA, Sitar N (1997) Analysis of topographic amplification of inclined shear waves in a steep coastal bluff. Bull Seismol Soc Am 87(3):692–700 Ashford SA, Sitar N (1997) Analysis of topographic amplification of inclined shear waves in a steep coastal bluff. Bull Seismol Soc Am 87(3):692–700
Zurück zum Zitat Bandini V, Biondi G, Cascone E, Rampello S (2015) A GLE-based model for seismic displacement analysis of slopes including strength degradation and geometry rearrangement. Soil Dyn Earthq Eng 71:128–142CrossRef Bandini V, Biondi G, Cascone E, Rampello S (2015) A GLE-based model for seismic displacement analysis of slopes including strength degradation and geometry rearrangement. Soil Dyn Earthq Eng 71:128–142CrossRef
Zurück zum Zitat Biondi G, Cascone E, Maugeri M (2002) Flow and deformation failure of sandy slopes. Soil Dyn Earthq Eng 22(9):1103–1114CrossRef Biondi G, Cascone E, Maugeri M (2002) Flow and deformation failure of sandy slopes. Soil Dyn Earthq Eng 22(9):1103–1114CrossRef
Zurück zum Zitat Bouckovalas GD, Papadimitriou AG (2005) Numerical evaluation of slope topography effects on seismic ground motion. Soil Dyn Earthq Eng 25(7):547–558CrossRef Bouckovalas GD, Papadimitriou AG (2005) Numerical evaluation of slope topography effects on seismic ground motion. Soil Dyn Earthq Eng 25(7):547–558CrossRef
Zurück zum Zitat Brideau MA, Yan M, Stead D (2009) The role of tectonic damage and brittle rock fracture in the development of large rock slope failures. Geomorphology 103(1):30–49CrossRef Brideau MA, Yan M, Stead D (2009) The role of tectonic damage and brittle rock fracture in the development of large rock slope failures. Geomorphology 103(1):30–49CrossRef
Zurück zum Zitat Cai M (2008) Influence of intermediate principal stress on rock fracturing and strength near excavation boundaries—insight from numerical modeling. Int J Rock Mech Min Sci 45(5):763–772CrossRef Cai M (2008) Influence of intermediate principal stress on rock fracturing and strength near excavation boundaries—insight from numerical modeling. Int J Rock Mech Min Sci 45(5):763–772CrossRef
Zurück zum Zitat Clague JJ, Stead D (2012) Landslides: types, mechanisms and modeling. Cambridge University Press, CambridgeCrossRef Clague JJ, Stead D (2012) Landslides: types, mechanisms and modeling. Cambridge University Press, CambridgeCrossRef
Zurück zum Zitat Dunning SA, Mitchell WA, Rosser NJ, Petley DN (2007) The Hattian Bala rock avalanche and associated landslides triggered by the Kashmir Earthquake of 8 October 2005. Eng Geol 93(3–4):130–144CrossRef Dunning SA, Mitchell WA, Rosser NJ, Petley DN (2007) The Hattian Bala rock avalanche and associated landslides triggered by the Kashmir Earthquake of 8 October 2005. Eng Geol 93(3–4):130–144CrossRef
Zurück zum Zitat Feng W, Xu Q, Huang R (2009) Preliminary study on mechanical mechanism of slope earthquake-induced deformation. Chin J Rock Mech Eng 28:3124–3130 Feng W, Xu Q, Huang R (2009) Preliminary study on mechanical mechanism of slope earthquake-induced deformation. Chin J Rock Mech Eng 28:3124–3130
Zurück zum Zitat Guan ZC (2009) Investigation of the 5.12 Wenchuan earthquake damages to the Zipingpu water control project and an assessment of its safety state. Sci China Ser E Technol Sci 52(4):820–834CrossRef Guan ZC (2009) Investigation of the 5.12 Wenchuan earthquake damages to the Zipingpu water control project and an assessment of its safety state. Sci China Ser E Technol Sci 52(4):820–834CrossRef
Zurück zum Zitat Harp EL, Jibson RW (1996) Inventory of landslides triggered by the 1994 Northridge, California earthquake. Bull Seismol Soc Am 86(1B):S319–S332 Harp EL, Jibson RW (1996) Inventory of landslides triggered by the 1994 Northridge, California earthquake. Bull Seismol Soc Am 86(1B):S319–S332
Zurück zum Zitat Hong H, You J, Bi X (2016) The Ludian earthquake of 3 August 2014. Geomat Nat Haz Risk 7(2):450–457CrossRef Hong H, You J, Bi X (2016) The Ludian earthquake of 3 August 2014. Geomat Nat Haz Risk 7(2):450–457CrossRef
Zurück zum Zitat Huang R, Xu Q, Huo J (2011) Mechanism and geo-mechanics models of landslides triggered by 5.12 Wenchuan earthquake. J Mount Sci 8(2):200–210CrossRef Huang R, Xu Q, Huo J (2011) Mechanism and geo-mechanics models of landslides triggered by 5.12 Wenchuan earthquake. J Mount Sci 8(2):200–210CrossRef
Zurück zum Zitat Keefer DK (1984) Landslides caused by earthquakes. Geol Soc Am Bull 95(4):406–421CrossRef Keefer DK (1984) Landslides caused by earthquakes. Geol Soc Am Bull 95(4):406–421CrossRef
Zurück zum Zitat Kobayashi Y, Harp EL, Kagawa T (1990) Simulation of rockfalls triggered by earthquakes. Rock Mech Rock Eng 23(1):1–20CrossRef Kobayashi Y, Harp EL, Kagawa T (1990) Simulation of rockfalls triggered by earthquakes. Rock Mech Rock Eng 23(1):1–20CrossRef
Zurück zum Zitat Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall, Upper Saddle River, NJ Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall, Upper Saddle River, NJ
Zurück zum Zitat Li X, He S (2009) Seismically induced slope instabilities and the corresponding treatments: the case of a road in the Wenchuan earthquake hit region. J Mount Sci 6(1):96–100CrossRef Li X, He S (2009) Seismically induced slope instabilities and the corresponding treatments: the case of a road in the Wenchuan earthquake hit region. J Mount Sci 6(1):96–100CrossRef
Zurück zum Zitat Li HB, Liu MC, Xing WB, Shao S, Zhou JW (2017) Failure mechanisms and evolution assessment of the excavation damaged zones in a large-scale and deeply buried underground powerhouse. Rock Mech Rock Eng 50(7):1883–1900CrossRef Li HB, Liu MC, Xing WB, Shao S, Zhou JW (2017) Failure mechanisms and evolution assessment of the excavation damaged zones in a large-scale and deeply buried underground powerhouse. Rock Mech Rock Eng 50(7):1883–1900CrossRef
Zurück zum Zitat Liu N (2015) Hongshiyan landslide dam danger removal and coordinated management. Front Eng Manage 1(3):308–317CrossRef Liu N (2015) Hongshiyan landslide dam danger removal and coordinated management. Front Eng Manage 1(3):308–317CrossRef
Zurück zum Zitat Liu CZ, Ge YG, Jiang XY, Guo YY (2016) Dynamic analysis of the Hongshiyan collapse triggered by Ludian earthquake. J Disaster Prev Mitigation Eng 36(4):601–608 Liu CZ, Ge YG, Jiang XY, Guo YY (2016) Dynamic analysis of the Hongshiyan collapse triggered by Ludian earthquake. J Disaster Prev Mitigation Eng 36(4):601–608
Zurück zum Zitat Lv Q, Liu Y, Yang Q (2017) Stability analysis of earthquake-induced rock slope based on back analysis of shear strength parameters of rock mass. Eng Geol 228:39–49CrossRef Lv Q, Liu Y, Yang Q (2017) Stability analysis of earthquake-induced rock slope based on back analysis of shear strength parameters of rock mass. Eng Geol 228:39–49CrossRef
Zurück zum Zitat Pedersen H, Le Brun B, Hatzfeld D, Campillo M, Bard PY (1994) Ground-motion amplitude across ridges. Bull Seismol Soc Am 84(6):1786–1800 Pedersen H, Le Brun B, Hatzfeld D, Campillo M, Bard PY (1994) Ground-motion amplitude across ridges. Bull Seismol Soc Am 84(6):1786–1800
Zurück zum Zitat Rizzitano S, Cascone E, Biondi G (2014) Coupling of topographic and stratigraphic effects on seismic response of slopes through 2D linear and equivalent linear analyses. Soil Dyn Earthq Eng 67:66–84CrossRef Rizzitano S, Cascone E, Biondi G (2014) Coupling of topographic and stratigraphic effects on seismic response of slopes through 2D linear and equivalent linear analyses. Soil Dyn Earthq Eng 67:66–84CrossRef
Zurück zum Zitat Sepúlveda SA, Murphy W, Jibson RW, Petley DN (2005) Seismically induced rock slope failures resulting from topographic amplification of strong ground motions: the case of Pacoima Canyon, California. Eng Geol 80(3):336–348CrossRef Sepúlveda SA, Murphy W, Jibson RW, Petley DN (2005) Seismically induced rock slope failures resulting from topographic amplification of strong ground motions: the case of Pacoima Canyon, California. Eng Geol 80(3):336–348CrossRef
Zurück zum Zitat Shi ZM, Xiong X, Peng M, Zhang LM, Xiong YF, Chen HX, Zhu Y (2017) Risk assessment and mitigation for the Hongshiyan landslide dam triggered by the 2014 Ludian earthquake in Yunnan, China. Landslides 14(1):269–285CrossRef Shi ZM, Xiong X, Peng M, Zhang LM, Xiong YF, Chen HX, Zhu Y (2017) Risk assessment and mitigation for the Hongshiyan landslide dam triggered by the 2014 Ludian earthquake in Yunnan, China. Landslides 14(1):269–285CrossRef
Zurück zum Zitat Smith JV (2015) Self-stabilization of toppling and hillside creep in layered rocks. Eng Geol 196:139–149CrossRef Smith JV (2015) Self-stabilization of toppling and hillside creep in layered rocks. Eng Geol 196:139–149CrossRef
Zurück zum Zitat Stead D, Wolter A (2015) A critical review of rock slope failure mechanisms: the importance of structural geology. J Struct Geol 74:1–23CrossRef Stead D, Wolter A (2015) A critical review of rock slope failure mechanisms: the importance of structural geology. J Struct Geol 74:1–23CrossRef
Zurück zum Zitat Wu Y, He SM, Li XP, Luo Y (2010) Failure mechanism and diagnosis method of dangerous crack rock after earthquake. J Sichuan Univ (Eng Sci Edition) 42(5):185–190 Wu Y, He SM, Li XP, Luo Y (2010) Failure mechanism and diagnosis method of dangerous crack rock after earthquake. J Sichuan Univ (Eng Sci Edition) 42(5):185–190
Zurück zum Zitat Xu Q, Dong XJ (2011) Genetic types of large-scale landslides induced by Wenchuan earthquake. Earth Sci J China Univer Geosci 36(6):1134–1142 Xu Q, Dong XJ (2011) Genetic types of large-scale landslides induced by Wenchuan earthquake. Earth Sci J China Univer Geosci 36(6):1134–1142
Zurück zum Zitat Xu X, Xu C, Yu G, Wu X, Li X, Zhang J (2015) Primary surface ruptures of the Ludian Mw 6.2 earthquake, southeastern Tibetan plateau, China. Seismol Res Lett 86(6):1622–1635CrossRef Xu X, Xu C, Yu G, Wu X, Li X, Zhang J (2015) Primary surface ruptures of the Ludian Mw 6.2 earthquake, southeastern Tibetan plateau, China. Seismol Res Lett 86(6):1622–1635CrossRef
Zurück zum Zitat Zhang S, Xie X, Wei F, Chernomorets S, Petrakov D, Pavlova I, Tellez RD (2015) A seismically triggered landslide dam in Honshiyan, Yunnan, China: from emergency management to hydropower potential. Landslides 12(6):1147–1157CrossRef Zhang S, Xie X, Wei F, Chernomorets S, Petrakov D, Pavlova I, Tellez RD (2015) A seismically triggered landslide dam in Honshiyan, Yunnan, China: from emergency management to hydropower potential. Landslides 12(6):1147–1157CrossRef
Zurück zum Zitat Zhou JW, Xu WY, Yang XG, Shi C, Yang ZH (2010) The 28 October 1996 landslide and analysis of the stability of the current Huashiban slope at the Liangjiaren Hydropower Station, Southwest China. Eng Geol 114(1):45–56CrossRef Zhou JW, Xu WY, Yang XG, Shi C, Yang ZH (2010) The 28 October 1996 landslide and analysis of the stability of the current Huashiban slope at the Liangjiaren Hydropower Station, Southwest China. Eng Geol 114(1):45–56CrossRef
Zurück zum Zitat Zhou JW, Cui P, Yang XG (2013) Dynamic process analysis for the initiation and movement of the Donghekou landslide-debris flow triggered by the Wenchuan earthquake. J Asian Earth Sci 76:70–84CrossRef Zhou JW, Cui P, Yang XG (2013) Dynamic process analysis for the initiation and movement of the Donghekou landslide-debris flow triggered by the Wenchuan earthquake. J Asian Earth Sci 76:70–84CrossRef
Zurück zum Zitat Zhou JW, Lu PY, Hao MH (2015) Landslides triggered by the 3 August 2014 Ludian earthquake in China: geological properties, geomorphologic characteristics and spatial distribution analysis. Geomat Nat Haz Risk 7(4):1219–1241CrossRef Zhou JW, Lu PY, Hao MH (2015) Landslides triggered by the 3 August 2014 Ludian earthquake in China: geological properties, geomorphologic characteristics and spatial distribution analysis. Geomat Nat Haz Risk 7(4):1219–1241CrossRef
Metadaten
Titel
Dynamical process of the Hongshiyan landslide induced by the 2014 Ludian earthquake and stability evaluation of the back scarp of the remnant slope
verfasst von
Hai-Bo Li
Xiao-Wen Li
Yu Ning
Shu-Fang Jiang
Jia-Wen Zhou
Publikationsdatum
01.02.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Bulletin of Engineering Geology and the Environment / Ausgabe 3/2019
Print ISSN: 1435-9529
Elektronische ISSN: 1435-9537
DOI
https://doi.org/10.1007/s10064-018-1233-6

Weitere Artikel der Ausgabe 3/2019

Bulletin of Engineering Geology and the Environment 3/2019 Zur Ausgabe