Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 8/2017

22.07.2017 | Original Paper

Titania-reduced graphene oxide nanocomposite as a promising visible light-active photocatalyst for continuous degradation of VVOC in air purification process

verfasst von: Akram Ebrahimi, Shohreh Fatemi

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 8/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Titania-reduced graphene oxide nanocomposites have been prepared through facile hydrothermal method by a reaction between P25 as TiO2 source and graphene oxide. Reduction of graphene oxide and its reaction with P25 nanoparticles were achieved simultaneously at high temperature and pressure during the hydrothermal process with the minimum organic solvents. Chemical bonds, crystalline structure, morphology, porosity and light absorption of composites along with their photocatalytic activity under UV and visible light irradiation were investigated. Transmission electron microscopy images showed that P25 nanoparticles, with diameters about 25 nm, were dispersed on the sheets of reduced graphene oxide (RGO) homogeneously. A stronger interaction between P25 and RGO provided a red shift about 20 nm in the absorption edge of the composites. To set up a continuous tubular reactor made from thin layer of the prepared material, composite films were coated on the external surface of a steel tube to make an annular reactor. The reactor was equipped with UV or visible light sources to investigate the photocatalytic activity of the prepared composites in a continuous air flow contaminated with specified amount of acetaldehyde as a VVOC (very volatile organic compound) model molecule. Degradation efficiency of P25–RGO with 0.5 wt% RGO was significantly high under visible light irradiation, and about 70% conversion was observed using an air flow at normal conditions with specific flow rate of 17 ml min−1 and 500 ppm acetaldehyde, by 30 mg of the coated composite in the reactor. Composites with low amount of RGO would be an appropriate photosensitizer and electron acceptor to suppress the recombination of photogenerated electron–hole pairs to enhance the photocatalytic performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abdolhosseinzadeh S, Asgharzadeh H, Seop Kim H (2015) Fast and fully-scalable synthesis of reduced graphene oxide. Nature 5(10160):1–7. doi:10.1038/srep10160 Abdolhosseinzadeh S, Asgharzadeh H, Seop Kim H (2015) Fast and fully-scalable synthesis of reduced graphene oxide. Nature 5(10160):1–7. doi:10.​1038/​srep10160
Zurück zum Zitat Fan W, Lai Q, Zhang Q, Wang Y (2011) Nanocomposites of TiO 2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution. J Phys Chem C 115(21):10694–10701. doi:10.1021/jp2008804 CrossRef Fan W, Lai Q, Zhang Q, Wang Y (2011) Nanocomposites of TiO 2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution. J Phys Chem C 115(21):10694–10701. doi:10.​1021/​jp2008804 CrossRef
Zurück zum Zitat Liu K, Zhang J-J, Cheng F-F, Zheng T-T, Wang C, Zhu J-J (2011) Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. J Mater Chem 21(32):12034–12040. doi:10.1039/c1jm10749f CrossRef Liu K, Zhang J-J, Cheng F-F, Zheng T-T, Wang C, Zhu J-J (2011) Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. J Mater Chem 21(32):12034–12040. doi:10.​1039/​c1jm10749f CrossRef
Zurück zum Zitat Luo L-J, Zhang X-J, Ma F-J, Zhang A-L, Bian L-C, Pan X-J, Jiang F-Z (2014) Photocatalytic degradation of bisphenol A by TiO2-reduced graphene oxide nanocomposites. React Kinet Mech Catal 114(1):311–322. doi:10.1007/s11144-014-0761-8 CrossRef Luo L-J, Zhang X-J, Ma F-J, Zhang A-L, Bian L-C, Pan X-J, Jiang F-Z (2014) Photocatalytic degradation of bisphenol A by TiO2-reduced graphene oxide nanocomposites. React Kinet Mech Catal 114(1):311–322. doi:10.​1007/​s11144-014-0761-8 CrossRef
Zurück zum Zitat Min Y, Zhang K, Zhao W, Zheng F, Chen Y, Zhang Y (2012) Enhanced chemical interaction between TiO2 and graphene oxide for photocatalytic decolorization of methylene blue. Chem Eng J 193–194:203–210. doi:10.1016/j.cej.2012.04.047 CrossRef Min Y, Zhang K, Zhao W, Zheng F, Chen Y, Zhang Y (2012) Enhanced chemical interaction between TiO2 and graphene oxide for photocatalytic decolorization of methylene blue. Chem Eng J 193–194:203–210. doi:10.​1016/​j.​cej.​2012.​04.​047 CrossRef
Zurück zum Zitat Nguyen-Phan T-D, Pham VH, Yun H, Kim EJ, Hur SH, Chung JS, Shin EW (2011) Influence of heat treatment on thermally-reduced graphene oxide/TiO2 composites for photocatalytic applications. Korean J Chem Eng 28(12):2236–2241. doi:10.1007/s11814-011-0123-4 CrossRef Nguyen-Phan T-D, Pham VH, Yun H, Kim EJ, Hur SH, Chung JS, Shin EW (2011) Influence of heat treatment on thermally-reduced graphene oxide/TiO2 composites for photocatalytic applications. Korean J Chem Eng 28(12):2236–2241. doi:10.​1007/​s11814-011-0123-4 CrossRef
Zurück zum Zitat Perez-Padilla R, Schilmann A, Riojas-Rodriguez H (2010) Respiratory health effects of indoor air pollution. Int J Tuberc Lung Dis 14(9):1079–1086 Perez-Padilla R, Schilmann A, Riojas-Rodriguez H (2010) Respiratory health effects of indoor air pollution. Int J Tuberc Lung Dis 14(9):1079–1086
Zurück zum Zitat Shang Q, Tan X, Yu T, Zhang Z, Zou Y, Wang S (2015) Efficient gaseous toluene photoconversion on graphene-titanium dioxide nanocomposites with dominate exposed 001 facets. J Colloid Interface Sci 455:134–144. doi:10.1016/j.jcis.2015.05.036 CrossRef Shang Q, Tan X, Yu T, Zhang Z, Zou Y, Wang S (2015) Efficient gaseous toluene photoconversion on graphene-titanium dioxide nanocomposites with dominate exposed 001 facets. J Colloid Interface Sci 455:134–144. doi:10.​1016/​j.​jcis.​2015.​05.​036 CrossRef
Zurück zum Zitat Sing KSW (1982) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional). Pure Appl Chem 54(11):2201–2218. doi:10.1351/pac198254112201 CrossRef Sing KSW (1982) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional). Pure Appl Chem 54(11):2201–2218. doi:10.​1351/​pac198254112201 CrossRef
Zurück zum Zitat Stengl V, Bakardjieva S, Grygar TM, Bludská J, Kormunda M (2013) TiO2-graphene oxide nanocomposite as advanced photocatalytic materials. Chem Cent J 7(1):41–53. doi:10.1186/1752-153X-7-41 CrossRef Stengl V, Bakardjieva S, Grygar TM, Bludská J, Kormunda M (2013) TiO2-graphene oxide nanocomposite as advanced photocatalytic materials. Chem Cent J 7(1):41–53. doi:10.​1186/​1752-153X-7-41 CrossRef
Zurück zum Zitat Trapalis A, Todorova N, Giannakopoulou T, Boukos N, Speliotis T, Dimotikali D, Yu J (2016) TiO2/graphene composite photocatalysts for NOx removal: a comparison of surfactant-stabilized graphene and reduced graphene oxide. Appl Catal B 180:637–647. doi:10.1016/j.apcatb.2015.07.009 CrossRef Trapalis A, Todorova N, Giannakopoulou T, Boukos N, Speliotis T, Dimotikali D, Yu J (2016) TiO2/graphene composite photocatalysts for NOx removal: a comparison of surfactant-stabilized graphene and reduced graphene oxide. Appl Catal B 180:637–647. doi:10.​1016/​j.​apcatb.​2015.​07.​009 CrossRef
Zurück zum Zitat Wang J, Zhu H, Hurren C, Zhao J, Pakdel E, Li Z, Wang X (2015) Degradation of organic dyes by P25-reduced graphene oxide: influence of inorganic salts and surfactants. J Environ Chem Eng 3(3):1437–1443. doi:10.1016/j.jece.2015.05.008 CrossRef Wang J, Zhu H, Hurren C, Zhao J, Pakdel E, Li Z, Wang X (2015) Degradation of organic dyes by P25-reduced graphene oxide: influence of inorganic salts and surfactants. J Environ Chem Eng 3(3):1437–1443. doi:10.​1016/​j.​jece.​2015.​05.​008 CrossRef
Zurück zum Zitat Yu S, Yun HJ, Kim YH, Yi J (2014) Carbon-doped TiO2 nanoparticles wrapped with nanographene as a high performance photocatalyst for phenol degradation under visible light irradiation. Appl Catal B 144:893–899. doi:10.1016/j.apcatb.2013.08.030 CrossRef Yu S, Yun HJ, Kim YH, Yi J (2014) Carbon-doped TiO2 nanoparticles wrapped with nanographene as a high performance photocatalyst for phenol degradation under visible light irradiation. Appl Catal B 144:893–899. doi:10.​1016/​j.​apcatb.​2013.​08.​030 CrossRef
Zurück zum Zitat Zhang X-Y (2010) Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J Mater Chem 20(14):2801–2806. doi:10.1039/b917240h CrossRef Zhang X-Y (2010) Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J Mater Chem 20(14):2801–2806. doi:10.​1039/​b917240h CrossRef
Zurück zum Zitat Zhang Y, Tang Z-R, Fu X, Xu Y-J (2010b) TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials? ACS Nano 4(12):7303–7314. doi:10.1021/nn1024219 CrossRef Zhang Y, Tang Z-R, Fu X, Xu Y-J (2010b) TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials? ACS Nano 4(12):7303–7314. doi:10.​1021/​nn1024219 CrossRef
Zurück zum Zitat Zhang J, Xiong Z, Zhao X (2011) Graphene–metal–oxide composites for the degradation of dyes under visible light irradiation. J Mater Chem 21:3634–3640. doi:10.1039/C0JM03827J CrossRef Zhang J, Xiong Z, Zhao X (2011) Graphene–metal–oxide composites for the degradation of dyes under visible light irradiation. J Mater Chem 21:3634–3640. doi:10.​1039/​C0JM03827J CrossRef
Zurück zum Zitat Zhang N, Zhang Y, Xu Y-J (2012a) Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 4(19):5792–5813. doi:10.1039/c2nr31480k CrossRef Zhang N, Zhang Y, Xu Y-J (2012a) Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 4(19):5792–5813. doi:10.​1039/​c2nr31480k CrossRef
Metadaten
Titel
Titania-reduced graphene oxide nanocomposite as a promising visible light-active photocatalyst for continuous degradation of VVOC in air purification process
verfasst von
Akram Ebrahimi
Shohreh Fatemi
Publikationsdatum
22.07.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 8/2017
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-017-1393-2

Weitere Artikel der Ausgabe 8/2017

Clean Technologies and Environmental Policy 8/2017 Zur Ausgabe