Skip to main content
Erschienen in: Journal of Material Cycles and Waste Management 3/2016

01.02.2016 | SPECIAL FEATURE: ORIGINAL ARTICLE

Enhancement of biogas production potential from Acacia leaf waste using alkaline pre-treatment and co-digestion

verfasst von: Pattawan Chaiyapong, Orathai Chavalparit

Erschienen in: Journal of Material Cycles and Waste Management | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The objective of this research was to evaluate possibility of utilizing Acacia leaves (A. mangium and A. auriculiformis), which is an agro-industrial waste from the pulp and paper industry. The effects of alkaline pre-treatment and co-digestion with Napier grass for the enhancement of biogas production from Acacia leaf waste (ALW) were investigated. Six continuous stirred tank reactors with a working volume of 5 L were carried out at the laboratory scale. The results showed that pre-treatment of Acacia leaf waste (pretreated ALW) by soaking in 3 % NaOH for 48 h increased the biogas and methane productivity to 0.200 and 0.117 m3/kgVSadded compared to 0.098 and 0.048 m3/kgVSadded of raw ALW digestion, respectively. Meanwhile, the co-digestion of Acacia leaves with different proportions of Napier grass at ratios of 1:1–1:3 in volatile solid basis also increased the production of biogas and its productivity. The maximum gas production yields of 0.424 and 0.268 m3/kgVSadded for biogas and methane were obtained at 1:3 ratio. This finding affirms the potential of ALW and its possibility to use as biogas feedstock in both single and co-substrate with Napier grass.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat DEDE (2012) The renewable and alternative energy development plan for 25 % in 10 years (AEDP 2012–2021). Department of Alternative Energy Promotion and Efficiency. Ministry of Energy, Bangkok DEDE (2012) The renewable and alternative energy development plan for 25 % in 10 years (AEDP 2012–2021). Department of Alternative Energy Promotion and Efficiency. Ministry of Energy, Bangkok
2.
Zurück zum Zitat Mata-Alvarez J, Dosta J, Romero-Guiza MS, Fonoll X, Peces M, Astals s (2014) A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew Sustain Energy Rev 36:412–427CrossRef Mata-Alvarez J, Dosta J, Romero-Guiza MS, Fonoll X, Peces M, Astals s (2014) A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew Sustain Energy Rev 36:412–427CrossRef
3.
Zurück zum Zitat Li C, Champagne P, Anderson BC (2014) Anaerobic co-digestion of municipal organic wastes and pre-treatment to enhance biogas production from waste. Water Sci Technol 69(2):443–449CrossRef Li C, Champagne P, Anderson BC (2014) Anaerobic co-digestion of municipal organic wastes and pre-treatment to enhance biogas production from waste. Water Sci Technol 69(2):443–449CrossRef
6.
Zurück zum Zitat Shah FA, Mahmood Q, Rashid N, Pervez A, Raja IA, Shah MM (2015) Co-digestion, pretreatment and digester design for enhanced methanogenesis. Renew Sustain Energy Rev 42:627–642CrossRef Shah FA, Mahmood Q, Rashid N, Pervez A, Raja IA, Shah MM (2015) Co-digestion, pretreatment and digester design for enhanced methanogenesis. Renew Sustain Energy Rev 42:627–642CrossRef
7.
Zurück zum Zitat Liew LN, Shi J, Li Y (2011) Enhancing the solid-state anaerobic digestion of fallen leaves through simultaneous alkaline treatment. Bioresour Technol 102(19):8828–8834CrossRef Liew LN, Shi J, Li Y (2011) Enhancing the solid-state anaerobic digestion of fallen leaves through simultaneous alkaline treatment. Bioresour Technol 102(19):8828–8834CrossRef
8.
Zurück zum Zitat Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53CrossRef Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53CrossRef
9.
Zurück zum Zitat Sambusiti C, Monlau F, Ficara E, Carrère H, Malpei F (2013) A comparison of different pre-treatments to increase methane production from two agricultural substrates. Appl Energy 104:62–70CrossRef Sambusiti C, Monlau F, Ficara E, Carrère H, Malpei F (2013) A comparison of different pre-treatments to increase methane production from two agricultural substrates. Appl Energy 104:62–70CrossRef
10.
Zurück zum Zitat Rebecca AS, Chen Y, Ratna RSS, Michael DB, Jason O (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol 98:3000–3011CrossRef Rebecca AS, Chen Y, Ratna RSS, Michael DB, Jason O (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol 98:3000–3011CrossRef
11.
Zurück zum Zitat Kumar KV, Sridevi V, Rani K, Sakunthala M, Kumar CS (2013) A review on production of biogas, fundamentals, applications & its recent enhancing techniques. Chem Eng 57:14073–14079 Kumar KV, Sridevi V, Rani K, Sakunthala M, Kumar CS (2013) A review on production of biogas, fundamentals, applications & its recent enhancing techniques. Chem Eng 57:14073–14079
13.
Zurück zum Zitat Macias-Corral M, Samani Z, Hanson A, Smith G, Funk P, Yu H, Longworth J (2008) Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure. Bioresour Technol 99(17):8288–8293CrossRef Macias-Corral M, Samani Z, Hanson A, Smith G, Funk P, Yu H, Longworth J (2008) Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure. Bioresour Technol 99(17):8288–8293CrossRef
14.
Zurück zum Zitat El-Mashad HM, Zhang R (2010) Biogas production from co-digestion of dairy manure and food waste. Bioresour Technol 101(11):4021–4028CrossRef El-Mashad HM, Zhang R (2010) Biogas production from co-digestion of dairy manure and food waste. Bioresour Technol 101(11):4021–4028CrossRef
15.
Zurück zum Zitat Chen G, Zheng Z, Yang S, Fang C, Zou X, Zhang J (2010) Improving conversion of Spartina alterniflora into biogas by co-digestion with cow feces. Fuel Process Technol 91(11):1416–1421CrossRef Chen G, Zheng Z, Yang S, Fang C, Zou X, Zhang J (2010) Improving conversion of Spartina alterniflora into biogas by co-digestion with cow feces. Fuel Process Technol 91(11):1416–1421CrossRef
16.
Zurück zum Zitat Lei Z, Chen J, Zhang Z, Sugiura N (2010) Methane production from rice straw with acclimated anaerobic sludge: effect of phosphate supplementation. Bioresour Technol 101(12):4343–4348CrossRef Lei Z, Chen J, Zhang Z, Sugiura N (2010) Methane production from rice straw with acclimated anaerobic sludge: effect of phosphate supplementation. Bioresour Technol 101(12):4343–4348CrossRef
17.
Zurück zum Zitat Yong Z, Dong Y, Zhang X, Tan T (2015) Anaerobic co-digestion of food waste and straw for biogas production. Renew Energy 78:527–530CrossRef Yong Z, Dong Y, Zhang X, Tan T (2015) Anaerobic co-digestion of food waste and straw for biogas production. Renew Energy 78:527–530CrossRef
18.
Zurück zum Zitat Diaz JP, Reyes IP, Lundin M, Horvath IS (2011) Co-digestion of different waste mixtures from agro-industrial activities; kinetic evaluation and synergetic effects. Bioresour Technol 102:10834–10840CrossRef Diaz JP, Reyes IP, Lundin M, Horvath IS (2011) Co-digestion of different waste mixtures from agro-industrial activities; kinetic evaluation and synergetic effects. Bioresour Technol 102:10834–10840CrossRef
19.
Zurück zum Zitat Nizami AS, Orozco A, Groom E, Dieterich B, Murphy JD (2012) How much gas can we get from grass? Appl Energy 92:783–790CrossRef Nizami AS, Orozco A, Groom E, Dieterich B, Murphy JD (2012) How much gas can we get from grass? Appl Energy 92:783–790CrossRef
20.
Zurück zum Zitat Wichern M, Gehring T, Fischer K, Andrade D, Lubken M, Koch K, Gronauer A, Horn H (2009) Monofermentation of grass silage under mesophilic conditions: measurements and mathematical modeling with ADM 1. Bioresour Technol 100(4):1675–1681CrossRef Wichern M, Gehring T, Fischer K, Andrade D, Lubken M, Koch K, Gronauer A, Horn H (2009) Monofermentation of grass silage under mesophilic conditions: measurements and mathematical modeling with ADM 1. Bioresour Technol 100(4):1675–1681CrossRef
21.
Zurück zum Zitat Romano RT, Zhang R, Teter S, McGarvey JA (2009) The effect of enzyme addition on anaerobic digestion of JoseTall Wheat Grass. Bioresour Technol 100(20):4564–4571CrossRef Romano RT, Zhang R, Teter S, McGarvey JA (2009) The effect of enzyme addition on anaerobic digestion of JoseTall Wheat Grass. Bioresour Technol 100(20):4564–4571CrossRef
22.
Zurück zum Zitat Asam ZZ, Poulsen TG, Nizami AS, Rafique R, Kiely G, Murphy JD (2011) How can we improve biomethane production per unit of feedstock in biogas plants? Appl Energy 88(6):2013–2018CrossRef Asam ZZ, Poulsen TG, Nizami AS, Rafique R, Kiely G, Murphy JD (2011) How can we improve biomethane production per unit of feedstock in biogas plants? Appl Energy 88(6):2013–2018CrossRef
23.
Zurück zum Zitat Janejadkarn A, Chavalparit O (2014) Biogas production from Napier Grass (Pak Chong 1) (Pennisetum purpureum × Pennisetum americanum). Adv Mater Res 856:327–332CrossRef Janejadkarn A, Chavalparit O (2014) Biogas production from Napier Grass (Pak Chong 1) (Pennisetum purpureum × Pennisetum americanum). Adv Mater Res 856:327–332CrossRef
24.
Zurück zum Zitat Nizami AS, Murphy JD (2010) What type of digester configuration should be employed to produce biomethane from grass. Renew Sustain Energy Rev 14:1558–1568CrossRef Nizami AS, Murphy JD (2010) What type of digester configuration should be employed to produce biomethane from grass. Renew Sustain Energy Rev 14:1558–1568CrossRef
25.
Zurück zum Zitat Federation WE, American Public Health Association (2005) Standard methods for the examination of water and wastewater. American Public Health Association (APHA), Washington, DC, USA Federation WE, American Public Health Association (2005) Standard methods for the examination of water and wastewater. American Public Health Association (APHA), Washington, DC, USA
26.
Zurück zum Zitat Panichnumsin P, Nopharatana A, Ahring B, Chaiprasert P (2010) Production of methane by co-digestion of cassava pulp with various concentrations of pig manure. Biomass Bioenergy 34:1117–1124CrossRef Panichnumsin P, Nopharatana A, Ahring B, Chaiprasert P (2010) Production of methane by co-digestion of cassava pulp with various concentrations of pig manure. Biomass Bioenergy 34:1117–1124CrossRef
27.
Zurück zum Zitat Zhang C, Xiao G, Peng L, Su H, Tan T (2013) The anaerobic co-digestion of food waste and cattle manure. Bioresour Technol 129:170–176CrossRef Zhang C, Xiao G, Peng L, Su H, Tan T (2013) The anaerobic co-digestion of food waste and cattle manure. Bioresour Technol 129:170–176CrossRef
28.
Zurück zum Zitat Wu X, Yao W, Zhu J, Miller C (2010) Biogas and CH4 productivity by co-digesting swine manure with three crop residues as an external carbon source. Bioresour Technol 101:4042–4047CrossRef Wu X, Yao W, Zhu J, Miller C (2010) Biogas and CH4 productivity by co-digesting swine manure with three crop residues as an external carbon source. Bioresour Technol 101:4042–4047CrossRef
29.
Zurück zum Zitat Luste S, Luostarinen S, Sillanpää M (2009) Effect of pretreatments on hydrolysis and methane production potentials of by-products from meat-rocessing industry. J Hazard Mater 164(1): 247–255CrossRef Luste S, Luostarinen S, Sillanpää M (2009) Effect of pretreatments on hydrolysis and methane production potentials of by-products from meat-rocessing industry. J Hazard Mater 164(1): 247–255CrossRef
30.
Zurück zum Zitat Hendriks A, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18CrossRef Hendriks A, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18CrossRef
33.
Zurück zum Zitat Aragaw T, Andargie M, Gessesse A (2013) Co-digestion of cattle manure with organic kitchen waste to increase biogas production using rumen fluid as inoculums. Int J Phys Sci 8(11):443–450 Aragaw T, Andargie M, Gessesse A (2013) Co-digestion of cattle manure with organic kitchen waste to increase biogas production using rumen fluid as inoculums. Int J Phys Sci 8(11):443–450
Metadaten
Titel
Enhancement of biogas production potential from Acacia leaf waste using alkaline pre-treatment and co-digestion
verfasst von
Pattawan Chaiyapong
Orathai Chavalparit
Publikationsdatum
01.02.2016
Verlag
Springer Japan
Erschienen in
Journal of Material Cycles and Waste Management / Ausgabe 3/2016
Print ISSN: 1438-4957
Elektronische ISSN: 1611-8227
DOI
https://doi.org/10.1007/s10163-016-0469-0

Weitere Artikel der Ausgabe 3/2016

Journal of Material Cycles and Waste Management 3/2016 Zur Ausgabe