Skip to main content
Erschienen in: Acta Mechanica Sinica 5/2018

11.07.2018 | Research Paper

Numerical study on the turbulent mixing of planar shock-accelerated triangular heavy gases interface

verfasst von: Wei-Gang Zeng, Jian-Hua Pan, Yu-Xin Ren, Yu-Tao Sun

Erschienen in: Acta Mechanica Sinica | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The interaction of a planar shock wave with a triangle-shaped sulfur hexafluoride (\(\mathrm{SF_6}\)) cylinder surrounded by air is numerically studied using a high resolution finite volume method with minimum dispersion and controllable dissipation reconstruction. The vortex dynamics of the Richtmyer–Meshkov instability and the turbulent mixing induced by the Kelvin–Helmholtz instability are discussed. A modified reconstruction model is proposed to predict the circulation for the shock triangular gas–cylinder interaction flow. Several typical stages leading the shock-driven inhomogeneity flow to turbulent mixing transition are demonstrated. Both the decoupled length scales and the broadened inertial range of the turbulent kinetic energy spectrum in late time manifest the turbulent mixing transition for the present case. The analysis of variable-density energy transfer indicates that the flow structures with high wavenumbers inside the Kelvin–Helmholtz vortices can gain energy from the mean flow in total. Consequently, small scale flow structures are generated therein by means of nonlinear interactions. Furthermore, the occasional “pairing” between a vortex and its neighboring vortex will trigger the merging process of vortices and, finally, create a large turbulent mixing zone.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lindl, J.: Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 3933–4024 (1995)CrossRef Lindl, J.: Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 3933–4024 (1995)CrossRef
2.
Zurück zum Zitat Arnett, D.: The role of mixing in astrophysics. Astrophys. J. Suppl. Ser. 127, 213–217 (2000)CrossRef Arnett, D.: The role of mixing in astrophysics. Astrophys. J. Suppl. Ser. 127, 213–217 (2000)CrossRef
3.
Zurück zum Zitat Yang, J., Kubota, T., Zukoski, E.E.: Applications of shock-induced mixing to supersonic combustion. AIAA J. 31, 854–862 (1993)CrossRef Yang, J., Kubota, T., Zukoski, E.E.: Applications of shock-induced mixing to supersonic combustion. AIAA J. 31, 854–862 (1993)CrossRef
4.
Zurück zum Zitat Richtmyer, R.D.: Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13, 297–319 (1960)MathSciNetCrossRef Richtmyer, R.D.: Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13, 297–319 (1960)MathSciNetCrossRef
5.
Zurück zum Zitat Meshkov, E.E.: Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4, 101–104 (1969)CrossRef Meshkov, E.E.: Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4, 101–104 (1969)CrossRef
6.
Zurück zum Zitat Zhang, Q., Sohn, S.I.: Nonlinear theory of unstable fluid mixing driven by shock wave. Phys. Fluids 9, 1106–1124 (1997)MathSciNetCrossRef Zhang, Q., Sohn, S.I.: Nonlinear theory of unstable fluid mixing driven by shock wave. Phys. Fluids 9, 1106–1124 (1997)MathSciNetCrossRef
7.
Zurück zum Zitat Vandenboomgaerde, M., Gauthier, S., Mgler, C.: Nonlinear regime of a multimode Richtmyer–Meshkov instability: a simplified perturbation theory. Phys. Fluids 14, 1111–1122 (2002)MathSciNetCrossRef Vandenboomgaerde, M., Gauthier, S., Mgler, C.: Nonlinear regime of a multimode Richtmyer–Meshkov instability: a simplified perturbation theory. Phys. Fluids 14, 1111–1122 (2002)MathSciNetCrossRef
8.
Zurück zum Zitat Matsuoka, C., Nishihara, K., Fukuda, Y.: Nonlinear evolution of an interface in the Richtmyer–Meshkov instability. Phys. Rev. E 67, 036301 (2003)CrossRef Matsuoka, C., Nishihara, K., Fukuda, Y.: Nonlinear evolution of an interface in the Richtmyer–Meshkov instability. Phys. Rev. E 67, 036301 (2003)CrossRef
9.
Zurück zum Zitat Sohn, S.I.: Simple potential-flow model of Rayleigh–Taylor and Richtmyer–Meshkov instabilities for all density ratios. Phys. Rev. E 67, 026301 (2003)CrossRef Sohn, S.I.: Simple potential-flow model of Rayleigh–Taylor and Richtmyer–Meshkov instabilities for all density ratios. Phys. Rev. E 67, 026301 (2003)CrossRef
10.
Zurück zum Zitat Picone, J.M., Boris, J.P.: Vorticity generation by shock propagation through bubbles in a gas. J. Fluid Mech. 189, 23–51 (1988)CrossRef Picone, J.M., Boris, J.P.: Vorticity generation by shock propagation through bubbles in a gas. J. Fluid Mech. 189, 23–51 (1988)CrossRef
11.
Zurück zum Zitat Yang, J., Kubota, T., Zukoski, E.E.: A model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity. J. Fluid Mech. 258, 217–244 (1994)CrossRef Yang, J., Kubota, T., Zukoski, E.E.: A model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity. J. Fluid Mech. 258, 217–244 (1994)CrossRef
12.
Zurück zum Zitat Samtaney, R., Zabusky, N.J.: Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: models and scaling laws. J. Fluid Mech. 269, 45–78 (1994)CrossRef Samtaney, R., Zabusky, N.J.: Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: models and scaling laws. J. Fluid Mech. 269, 45–78 (1994)CrossRef
13.
Zurück zum Zitat Niederhaus, J.H.J., Greenough, J.A., Oakley, J.G., et al.: A computational parameter study for the three-dimensional shock-bubble interaction. J. Fluid Mech. 594, 85–124 (2008)CrossRef Niederhaus, J.H.J., Greenough, J.A., Oakley, J.G., et al.: A computational parameter study for the three-dimensional shock-bubble interaction. J. Fluid Mech. 594, 85–124 (2008)CrossRef
14.
Zurück zum Zitat Jacobs, J.W., Krivets, V.V.: Experiments on the late-time development of single-mode Richtmyer–Meshkov instability. Phys. Fluids 17, 034105 (2005)CrossRef Jacobs, J.W., Krivets, V.V.: Experiments on the late-time development of single-mode Richtmyer–Meshkov instability. Phys. Fluids 17, 034105 (2005)CrossRef
15.
Zurück zum Zitat Wang, X., Yang, D., Wu, J., et al.: Interaction of a weak shock wave with a discontinuous heavy-gas cylinder. Phys. Fluids 27, 064104 (2015)CrossRef Wang, X., Yang, D., Wu, J., et al.: Interaction of a weak shock wave with a discontinuous heavy-gas cylinder. Phys. Fluids 27, 064104 (2015)CrossRef
16.
Zurück zum Zitat Tritschler, V.K., Olson, B.J., Lele, S.K., et al.: On the Richtmyer–Meshkov instability evolving from a deterministic multimode planar interface. J. Fluid Mech. 755, 429–462 (2014)MathSciNetCrossRef Tritschler, V.K., Olson, B.J., Lele, S.K., et al.: On the Richtmyer–Meshkov instability evolving from a deterministic multimode planar interface. J. Fluid Mech. 755, 429–462 (2014)MathSciNetCrossRef
17.
Zurück zum Zitat Thornber, B., Drikakis, D., Youngs, D.L., et al.: The influence of initial conditions on turbulent mixing due to Richtmyer–Meshkov instability. J. Fluid Mech. 654, 99–139 (2010)CrossRef Thornber, B., Drikakis, D., Youngs, D.L., et al.: The influence of initial conditions on turbulent mixing due to Richtmyer–Meshkov instability. J. Fluid Mech. 654, 99–139 (2010)CrossRef
18.
Zurück zum Zitat Hill, D.J., Pantano, C., Pullin, D.I.: Large-eddy simulation and multiscale modelling of a Richtmyer–Meshkov instability with reshock. J. Fluid Mech. 557, 29–61 (2006)MathSciNetCrossRef Hill, D.J., Pantano, C., Pullin, D.I.: Large-eddy simulation and multiscale modelling of a Richtmyer–Meshkov instability with reshock. J. Fluid Mech. 557, 29–61 (2006)MathSciNetCrossRef
19.
Zurück zum Zitat Thornber, B., Drikakis, D., Youngs, D.L., et al.: Growth of a Richtmyer–Meshkov turbulent layer after reshock. Phys. Fluids 23, 095107 (2011)CrossRef Thornber, B., Drikakis, D., Youngs, D.L., et al.: Growth of a Richtmyer–Meshkov turbulent layer after reshock. Phys. Fluids 23, 095107 (2011)CrossRef
20.
Zurück zum Zitat Thornber, B., Zhou, Y.: Numerical simulations of the two-dimensional multimode Richtmyer–Meshkov instability. Phys. Plasm. 22, 032309 (2015)CrossRef Thornber, B., Zhou, Y.: Numerical simulations of the two-dimensional multimode Richtmyer–Meshkov instability. Phys. Plasm. 22, 032309 (2015)CrossRef
21.
Zurück zum Zitat Olson, B.J., Greenough, J.A.: Comparison of two- and three-dimensional simulations of miscible Richtmyer–Meshkov instability with multimode initial conditions. Phys. Fluids 26, 101702 (2014)CrossRef Olson, B.J., Greenough, J.A.: Comparison of two- and three-dimensional simulations of miscible Richtmyer–Meshkov instability with multimode initial conditions. Phys. Fluids 26, 101702 (2014)CrossRef
22.
Zurück zum Zitat Mizuno, Y.: Spectra of energy transport in turbulent channel flows for moderate Reynolds numbers. J. Fluid Mech. 805, 171–187 (2016)MathSciNetCrossRef Mizuno, Y.: Spectra of energy transport in turbulent channel flows for moderate Reynolds numbers. J. Fluid Mech. 805, 171–187 (2016)MathSciNetCrossRef
23.
24.
Zurück zum Zitat Thornber, B., Zhou, Y.: Energy transfer in the Richtmyer–Meshkov instability. Phys. Rev. E 86, 056302 (2012)CrossRef Thornber, B., Zhou, Y.: Energy transfer in the Richtmyer–Meshkov instability. Phys. Rev. E 86, 056302 (2012)CrossRef
25.
Zurück zum Zitat Zhou, Q., Huang, Y.X., Lu, Z.M., et al.: Scale-to-scale energy and enstrophy transport in two-dimensional Rayleigh–Taylor turbulence. J. Fluid Mech. 786, 294–308 (2016)MathSciNetCrossRef Zhou, Q., Huang, Y.X., Lu, Z.M., et al.: Scale-to-scale energy and enstrophy transport in two-dimensional Rayleigh–Taylor turbulence. J. Fluid Mech. 786, 294–308 (2016)MathSciNetCrossRef
26.
Zurück zum Zitat Wang, J., Yang, Y., Shi, Y., et al.: Cascade of kinetic energy in three-dimensional compressible turbulence. Phys. Rev. Lett. 110, 214505 (2013)CrossRef Wang, J., Yang, Y., Shi, Y., et al.: Cascade of kinetic energy in three-dimensional compressible turbulence. Phys. Rev. Lett. 110, 214505 (2013)CrossRef
27.
Zurück zum Zitat Liu, H., Xiao, Z.: Scale-to-scale energy transfer in mixing flow induced by the Richtmyer–Meshkov instability. Phys. Rev. E 93, 053112 (2016)CrossRef Liu, H., Xiao, Z.: Scale-to-scale energy transfer in mixing flow induced by the Richtmyer–Meshkov instability. Phys. Rev. E 93, 053112 (2016)CrossRef
28.
Zurück zum Zitat Thornber, B., Griffond, J., Poujade, O., et al.: Late-time growth rate, mixing, and anisotropy in the multimode narrowband Richtmyer–Meshkov instability: the \(\theta \)-group collaboration. Phys. Fluids 29, 105107 (2017)CrossRef Thornber, B., Griffond, J., Poujade, O., et al.: Late-time growth rate, mixing, and anisotropy in the multimode narrowband Richtmyer–Meshkov instability: the \(\theta \)-group collaboration. Phys. Fluids 29, 105107 (2017)CrossRef
29.
Zurück zum Zitat Mohaghar, M., Carter, J., Musci, B., et al.: Evaluation of turbulent mixing transition in a shock-driven variable-density flow. J. Fluid Mech. 831, 779–825 (2017)MathSciNetCrossRef Mohaghar, M., Carter, J., Musci, B., et al.: Evaluation of turbulent mixing transition in a shock-driven variable-density flow. J. Fluid Mech. 831, 779–825 (2017)MathSciNetCrossRef
30.
Zurück zum Zitat Thornber, B.: Impact of domain size and statistical errors in simulations of homogeneous decaying turbulence and the Richtmyer–Meshkov instability. Phys. Fluids 28, 045106 (2016)CrossRef Thornber, B.: Impact of domain size and statistical errors in simulations of homogeneous decaying turbulence and the Richtmyer–Meshkov instability. Phys. Fluids 28, 045106 (2016)CrossRef
31.
Zurück zum Zitat Zhou, Y., Cabot, W.H., Thornber, B.: Asymptotic behavior of the mixed mass in Rayleigh–Taylor and Richtmyer–Meshkov instability induced flows. Phys. Plasmas 23, 052712 (2016)CrossRef Zhou, Y., Cabot, W.H., Thornber, B.: Asymptotic behavior of the mixed mass in Rayleigh–Taylor and Richtmyer–Meshkov instability induced flows. Phys. Plasmas 23, 052712 (2016)CrossRef
32.
Zurück zum Zitat Guan, B., Zhai, Z., Si, T., et al.: Manipulation of three-dimensional Richtmyer–Meshkov instability by initial interfacial principal curvatures. Phys. Fluids 29, 032106 (2017)CrossRef Guan, B., Zhai, Z., Si, T., et al.: Manipulation of three-dimensional Richtmyer–Meshkov instability by initial interfacial principal curvatures. Phys. Fluids 29, 032106 (2017)CrossRef
33.
Zurück zum Zitat Zhai, Z., Dong, P., Si, T., et al.: The Richtmyer–Meshkov instability of a V shaped air/helium interface subjected to a weak shock. Phys. Fluids 28, 082104 (2016)CrossRef Zhai, Z., Dong, P., Si, T., et al.: The Richtmyer–Meshkov instability of a V shaped air/helium interface subjected to a weak shock. Phys. Fluids 28, 082104 (2016)CrossRef
34.
Zurück zum Zitat Zhai, Z., Li, W., Si, T., et al.: Refraction of cylindrical converging shock wave at an air/helium gaseous interface. Phys. Fluids 29, 016102 (2017)CrossRef Zhai, Z., Li, W., Si, T., et al.: Refraction of cylindrical converging shock wave at an air/helium gaseous interface. Phys. Fluids 29, 016102 (2017)CrossRef
35.
Zurück zum Zitat Zhai, Z., Liang, Y., Liu, L., et al.: Interaction of rippled shock wave with flat fast-slow interface. Phys. Fluids 30, 046104 (2018)CrossRef Zhai, Z., Liang, Y., Liu, L., et al.: Interaction of rippled shock wave with flat fast-slow interface. Phys. Fluids 30, 046104 (2018)CrossRef
36.
Zurück zum Zitat Zhu, Y., Yu, L., Pan, J., et al.: Jet formation of \({\rm SF_6}\) bubble induced by incident and reflected shock waves. Phys. Fluids 29, 126105 (2017)CrossRef Zhu, Y., Yu, L., Pan, J., et al.: Jet formation of \({\rm SF_6}\) bubble induced by incident and reflected shock waves. Phys. Fluids 29, 126105 (2017)CrossRef
37.
Zurück zum Zitat Ou, J., Ding, J., Luo, X., et al.: Effects of Atwood number on shock focusing in shock-cylinder interaction. Exp. Fluids 59, 29 (2018)CrossRef Ou, J., Ding, J., Luo, X., et al.: Effects of Atwood number on shock focusing in shock-cylinder interaction. Exp. Fluids 59, 29 (2018)CrossRef
38.
Zurück zum Zitat Ding, J., Si, T., Chen, M., et al.: On the interaction of a planar shock with a three-dimensional light gas cylinder. J. Fluid Mech. 828, 289–317 (2017)MathSciNetCrossRef Ding, J., Si, T., Chen, M., et al.: On the interaction of a planar shock with a three-dimensional light gas cylinder. J. Fluid Mech. 828, 289–317 (2017)MathSciNetCrossRef
39.
Zurück zum Zitat Liang, Y., Ding, J., Zhai, Z., et al.: Interaction of cylindrically converging diffracted shock with uniform interface. Phys. Fluids 29, 086101 (2017)CrossRef Liang, Y., Ding, J., Zhai, Z., et al.: Interaction of cylindrically converging diffracted shock with uniform interface. Phys. Fluids 29, 086101 (2017)CrossRef
40.
Zurück zum Zitat Ding, J., Si, T., Yang, J., et al.: Measurement of a Richtmyer–Meshkov instability at an air-\({\rm SF_6}\) interface in a semiannular shock tube. Phys. Rev. Lett. 119, 014501 (2017)CrossRef Ding, J., Si, T., Yang, J., et al.: Measurement of a Richtmyer–Meshkov instability at an air-\({\rm SF_6}\) interface in a semiannular shock tube. Phys. Rev. Lett. 119, 014501 (2017)CrossRef
41.
Zurück zum Zitat Zou, L., Liao, S., Liu, C., et al.: Aspect ratio effect on shock-accelerated elliptic gas cylinders. Phys. Fluids 28, 036101 (2016)CrossRef Zou, L., Liao, S., Liu, C., et al.: Aspect ratio effect on shock-accelerated elliptic gas cylinders. Phys. Fluids 28, 036101 (2016)CrossRef
42.
Zurück zum Zitat Zhou, Y.: Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Reports 720–722, 1–136 (2017)MathSciNetMATH Zhou, Y.: Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Reports 720–722, 1–136 (2017)MathSciNetMATH
43.
Zurück zum Zitat Zhou, Y.: Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Phys. Reports 723–725, 1–160 (2017)MathSciNetMATH Zhou, Y.: Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Phys. Reports 723–725, 1–160 (2017)MathSciNetMATH
44.
Zurück zum Zitat Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125, 150–160 (1996)MathSciNetCrossRef Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125, 150–160 (1996)MathSciNetCrossRef
45.
Zurück zum Zitat Shankar, S.K., Lele, S.K.: Numerical investigation of turbulence in reshocked Richtmyer–Meshkov unstable curtain of dense gas. Shock Waves 24, 79–95 (2014)CrossRef Shankar, S.K., Lele, S.K.: Numerical investigation of turbulence in reshocked Richtmyer–Meshkov unstable curtain of dense gas. Shock Waves 24, 79–95 (2014)CrossRef
46.
Zurück zum Zitat Wilke, C.R.: A viscosity equation for gas mixtures. J. Chem. Phys. 18, 517–519 (1950)CrossRef Wilke, C.R.: A viscosity equation for gas mixtures. J. Chem. Phys. 18, 517–519 (1950)CrossRef
47.
Zurück zum Zitat Giordano, J., Burtschell, Y.: Richtmyer–Meshkov instability induced by shock-bubble interaction: numerical and analytical studies with experimental validation. Phys. Fluids 18, 036102 (2006)CrossRef Giordano, J., Burtschell, Y.: Richtmyer–Meshkov instability induced by shock-bubble interaction: numerical and analytical studies with experimental validation. Phys. Fluids 18, 036102 (2006)CrossRef
48.
Zurück zum Zitat Ramshaw, J.D.: Self-consistent effective binary diffusion in multicomponent gas mixtures. J. Non-Equilib. Thermodyn. 15, 295–300 (1990)CrossRef Ramshaw, J.D.: Self-consistent effective binary diffusion in multicomponent gas mixtures. J. Non-Equilib. Thermodyn. 15, 295–300 (1990)CrossRef
49.
Zurück zum Zitat Johnsen, E., Ham, F.: Preventing numerical errors generated by interface-capturing schemes in compressible multi-material flows. J. Comput. Phys. 231, 5705–5717 (2012)MathSciNetCrossRef Johnsen, E., Ham, F.: Preventing numerical errors generated by interface-capturing schemes in compressible multi-material flows. J. Comput. Phys. 231, 5705–5717 (2012)MathSciNetCrossRef
50.
Zurück zum Zitat Wang, Q.J., Ren, Y.X., Sun, Z.S., et al.: Low dispersion finite volume scheme based on reconstruction with minimized dispersion and controllable dissipation. Sci. China-Phys. Mech. Astron. 56, 423–431 (2013)CrossRef Wang, Q.J., Ren, Y.X., Sun, Z.S., et al.: Low dispersion finite volume scheme based on reconstruction with minimized dispersion and controllable dissipation. Sci. China-Phys. Mech. Astron. 56, 423–431 (2013)CrossRef
51.
Zurück zum Zitat Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 25–34 (1994)CrossRef Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 25–34 (1994)CrossRef
52.
Zurück zum Zitat Johnsen, E., Colonius, T.: Implementation of WENO schemes in compressible multicomponent flow problems. J. Comput. Phys. 219, 715–732 (2006)MathSciNetCrossRef Johnsen, E., Colonius, T.: Implementation of WENO schemes in compressible multicomponent flow problems. J. Comput. Phys. 219, 715–732 (2006)MathSciNetCrossRef
53.
Zurück zum Zitat Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)MathSciNetCrossRef Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)MathSciNetCrossRef
54.
Zurück zum Zitat Luo, X., Wang, M., Si, T., et al.: On the interaction of a planar shock with an \(\text{ SF }_ {6}\) polygon. J. Fluid Mech. 773, 366–394 (2015)CrossRef Luo, X., Wang, M., Si, T., et al.: On the interaction of a planar shock with an \(\text{ SF }_ {6}\) polygon. J. Fluid Mech. 773, 366–394 (2015)CrossRef
55.
Zurück zum Zitat Wang, M., Si, T., Luo, X.: Generation of polygonal gas interfaces by soap film for Richtmyer–Meshkov instability study. Exp. Fluids 54, 1427 (2013)CrossRef Wang, M., Si, T., Luo, X.: Generation of polygonal gas interfaces by soap film for Richtmyer–Meshkov instability study. Exp. Fluids 54, 1427 (2013)CrossRef
56.
Zurück zum Zitat Matsumoto, Y., Hoshino, M.: Onset of turbulence induced by a Kelvin–Helmholtz vortex. Geophys. Res. Lett. 31, L02807 (2004)CrossRef Matsumoto, Y., Hoshino, M.: Onset of turbulence induced by a Kelvin–Helmholtz vortex. Geophys. Res. Lett. 31, L02807 (2004)CrossRef
57.
Zurück zum Zitat Zhou, Y., Robey, H.F., Buckingham, A.C.: Onset of turbulence in accelerated high-Reynolds-number flow. Phys. Rev. E 67, 056305 (2003)CrossRef Zhou, Y., Robey, H.F., Buckingham, A.C.: Onset of turbulence in accelerated high-Reynolds-number flow. Phys. Rev. E 67, 056305 (2003)CrossRef
58.
Zurück zum Zitat Zhou, Y., Remington, B.A., Robey, H.F., et al.: Progress in understanding turbulent mixing induced by Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Plasmas 10, 1883–1896 (2003)CrossRef Zhou, Y., Remington, B.A., Robey, H.F., et al.: Progress in understanding turbulent mixing induced by Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Plasmas 10, 1883–1896 (2003)CrossRef
59.
Zurück zum Zitat Reilly, D., McFarland, J., Mohaghar, M., et al.: The effects of initial conditions and circulation deposition on the inclined-interface reshocked Richtmyer–Meshkov instability. Exp. Fluids 56, 168 (2015)CrossRef Reilly, D., McFarland, J., Mohaghar, M., et al.: The effects of initial conditions and circulation deposition on the inclined-interface reshocked Richtmyer–Meshkov instability. Exp. Fluids 56, 168 (2015)CrossRef
60.
Zurück zum Zitat Claude, M., Serge, G.: Two-dimensional Navier–Stocks simulations of gaseous mixtures induced by Richtmyer–Meshkov instability. Phys. Fluids 7, 1783–1798 (2000)MATH Claude, M., Serge, G.: Two-dimensional Navier–Stocks simulations of gaseous mixtures induced by Richtmyer–Meshkov instability. Phys. Fluids 7, 1783–1798 (2000)MATH
62.
Zurück zum Zitat Weber, C.R., Haehn, N.S., Oakley, J.G., et al.: An experimental investigation of the turbulent mixing transition in the Richtmyer–Meshkov instability. J. Fluid Mech. 748, 457–487 (2014)CrossRef Weber, C.R., Haehn, N.S., Oakley, J.G., et al.: An experimental investigation of the turbulent mixing transition in the Richtmyer–Meshkov instability. J. Fluid Mech. 748, 457–487 (2014)CrossRef
63.
64.
Zurück zum Zitat Whitham, G.B.: A new approach to problems of shock dynamics Part I Two-dimensional problems. J. Fluid Mech. 2, 145–171 (1957)MathSciNetCrossRef Whitham, G.B.: A new approach to problems of shock dynamics Part I Two-dimensional problems. J. Fluid Mech. 2, 145–171 (1957)MathSciNetCrossRef
65.
Zurück zum Zitat Rahmani, M., Lawrence, G.A., Seymour, B.R.: The effect of Reynolds number on mixing in Kelvin–Helmholtz billows. J. Fluid Mech. 759, 612–641 (2014)CrossRef Rahmani, M., Lawrence, G.A., Seymour, B.R.: The effect of Reynolds number on mixing in Kelvin–Helmholtz billows. J. Fluid Mech. 759, 612–641 (2014)CrossRef
66.
Zurück zum Zitat Corcos, G.M., Sherman, F.S.: Vorticity concentration and the dynamics of unstable free shear layers. J. Fluid Mech. 73, 241–264 (1976)CrossRef Corcos, G.M., Sherman, F.S.: Vorticity concentration and the dynamics of unstable free shear layers. J. Fluid Mech. 73, 241–264 (1976)CrossRef
67.
Zurück zum Zitat Mashayek, A., Peltier, W.R.: The zooof secondary instabilities precursory to stratified shear flow transition. Part 1: Shear aligned convection, pairing, and braid instabilities. J. Fluid Mech. 708, 5–44 (2012)MathSciNetCrossRef Mashayek, A., Peltier, W.R.: The zooof secondary instabilities precursory to stratified shear flow transition. Part 1: Shear aligned convection, pairing, and braid instabilities. J. Fluid Mech. 708, 5–44 (2012)MathSciNetCrossRef
68.
Zurück zum Zitat Mashayek, A., Peltier, W.R.: The zooof secondary instabilities precursory to stratified shear flow transition. Part 2: The influence of stratification. J. Fluid Mech. 708, 45–70 (2012)MathSciNetCrossRef Mashayek, A., Peltier, W.R.: The zooof secondary instabilities precursory to stratified shear flow transition. Part 2: The influence of stratification. J. Fluid Mech. 708, 45–70 (2012)MathSciNetCrossRef
69.
Zurück zum Zitat Rikanati, A., Alon, U., Shvarts, D.: Vortex-merger statistical-mechanics model for the late time self-similar evolution of the Kelvin–Helmholtz instability. Phys. Fluids 15, 3776–3785 (2003)MathSciNetCrossRef Rikanati, A., Alon, U., Shvarts, D.: Vortex-merger statistical-mechanics model for the late time self-similar evolution of the Kelvin–Helmholtz instability. Phys. Fluids 15, 3776–3785 (2003)MathSciNetCrossRef
Metadaten
Titel
Numerical study on the turbulent mixing of planar shock-accelerated triangular heavy gases interface
verfasst von
Wei-Gang Zeng
Jian-Hua Pan
Yu-Xin Ren
Yu-Tao Sun
Publikationsdatum
11.07.2018
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 5/2018
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-018-0786-8

Weitere Artikel der Ausgabe 5/2018

Acta Mechanica Sinica 5/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.