Skip to main content
Erschienen in: Flow, Turbulence and Combustion 2/2017

Open Access 01.07.2017

The State of the Art of Hybrid RANS/LES Modeling for the Simulation of Turbulent Flows

verfasst von: Bruno Chaouat

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This review presents the state of the art of hybrid RANS/LES modeling for the simulation of turbulent flows. After recalling the modeling used in RANS and LES methodologies, we propose in a first step a theoretical formalism developed in the spectral space that allows to unify the RANS and LES methods from a physical standpoint. In a second step, we discuss the principle of the hybrid RANS/LES methods capable of representing a RANS-type behavior in the vicinity of a solid boundary and an LES-type behavior far away from the wall boundary. Then, we analyze the principal hybrid RANS/LES methods usually used to perform numerical simulation of turbulent flows encountered in engineering applications. In particular, we investigate the very large eddy simulation (VLES), the detached eddy simulation (DES), the partially integrated transport modeling (PITM) method, the partially averaged Navier-Stokes (PANS) method, and the scale adaptive simulation (SAS) from a physical point of view. Finally, we establish the connection between these methods and more precisely, the link between PITM and PANS as well as DES and PITM showing that these methods that have been built by different ways, practical or theoretical manners have common points of comparison. It is the opinion of the author to consider that the most appropriate method for a particular application will depend on the expectations of the engineer and the computational resources the user is prepared to expend on the problem.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Geurts, B. J.: Elements of direct and large-eddy simulation. Edwards (2004) Geurts, B. J.: Elements of direct and large-eddy simulation. Edwards (2004)
2.
Zurück zum Zitat Lesieur, M., Métais, O., Comte, P.: Large-eddy Simulations of Turbulence. Cambridge University Press (2005) Lesieur, M., Métais, O., Comte, P.: Large-eddy Simulations of Turbulence. Cambridge University Press (2005)
4.
Zurück zum Zitat Leschziner, M., Li, M.N., Tessicini, F.: Simulating flow separation from continuous surfaces: Routes to overcoming the Reynolds number barrier Phil. Trans. R. Soc. A 367, 2885–2903 (2009)MATHCrossRef Leschziner, M., Li, M.N., Tessicini, F.: Simulating flow separation from continuous surfaces: Routes to overcoming the Reynolds number barrier Phil. Trans. R. Soc. A 367, 2885–2903 (2009)MATHCrossRef
5.
Zurück zum Zitat Choi, H., Moin, P.: Grid-point requirements for large eddy simulation: Chapman’s estimates revisited. Phys. Fluids 24, 011702, 1–5 (2012) Choi, H., Moin, P.: Grid-point requirements for large eddy simulation: Chapman’s estimates revisited. Phys. Fluids 24, 011702, 1–5 (2012)
6.
Zurück zum Zitat Pope, S.B.: Ten questions concerning the large-eddy-simulation of turbulent flows. New J. Phys. 6, 35, 1–24 (2004)CrossRef Pope, S.B.: Ten questions concerning the large-eddy-simulation of turbulent flows. New J. Phys. 6, 35, 1–24 (2004)CrossRef
7.
Zurück zum Zitat Gatski, T.B., Rumsey, C.L., Manceau, R.: Current trends in modelling research for turbulent aerodynamic flows. Philos. Trans. R. Soc. London, Ser. A 365, 2389–2418 (2007)MathSciNetCrossRef Gatski, T.B., Rumsey, C.L., Manceau, R.: Current trends in modelling research for turbulent aerodynamic flows. Philos. Trans. R. Soc. London, Ser. A 365, 2389–2418 (2007)MathSciNetCrossRef
8.
Zurück zum Zitat Schiestel, R.: Modeling and Simulation of Turbulent Flows. ISTE Ltd and J Wiley (2008) Schiestel, R.: Modeling and Simulation of Turbulent Flows. ISTE Ltd and J Wiley (2008)
9.
Zurück zum Zitat Hanjalic, K., Launder, B.E.: Modelling Turbulence in Engineering and the Environment. Second-moment Route to Closure. Cambridge University Press (2011) Hanjalic, K., Launder, B.E.: Modelling Turbulence in Engineering and the Environment. Second-moment Route to Closure. Cambridge University Press (2011)
10.
Zurück zum Zitat Hanjalic, K., Jakirlic, S.: Contribution towards the second-moment closure modeling of separating turbulent flows. Comput. Fluids 27, 137–156 (1998)MATHCrossRef Hanjalic, K., Jakirlic, S.: Contribution towards the second-moment closure modeling of separating turbulent flows. Comput. Fluids 27, 137–156 (1998)MATHCrossRef
11.
Zurück zum Zitat Leschziner, M.A., Drikakis, D.: Turbulence modelling and turbulent-flow computation in aeronautics. Aeronaut. J. 106, 349–383 (2002) Leschziner, M.A., Drikakis, D.: Turbulence modelling and turbulent-flow computation in aeronautics. Aeronaut. J. 106, 349–383 (2002)
12.
Zurück zum Zitat Chaouat, B.: Reynolds stress transport modeling for high-lift airfoil flows. AIAA J. 44, 2390–2403 (2006)CrossRef Chaouat, B.: Reynolds stress transport modeling for high-lift airfoil flows. AIAA J. 44, 2390–2403 (2006)CrossRef
13.
Zurück zum Zitat Sagaut, P., Deck, S., Teraccol, M.: Multiscale and Multiresolution Approaches in Turbulence, 2nd edn. Imperial College Press, London (2013)CrossRef Sagaut, P., Deck, S., Teraccol, M.: Multiscale and Multiresolution Approaches in Turbulence, 2nd edn. Imperial College Press, London (2013)CrossRef
14.
Zurück zum Zitat Fröhlich, J., Von Terzi, D.: Hybrid LES/RANS methods for the simulation of turbulent flows. Prog. Aerosp. Sci. 44, 349–377 (2008)CrossRef Fröhlich, J., Von Terzi, D.: Hybrid LES/RANS methods for the simulation of turbulent flows. Prog. Aerosp. Sci. 44, 349–377 (2008)CrossRef
15.
Zurück zum Zitat Speziale, C.G.: Turbulence modeling for time-dependent RANS and VLES: A review. AIAA J. 36, 173–184 (1998)MATHCrossRef Speziale, C.G.: Turbulence modeling for time-dependent RANS and VLES: A review. AIAA J. 36, 173–184 (1998)MATHCrossRef
16.
Zurück zum Zitat Fasel, H.F., Seidel, J., Wernz, S.: A methodology for simulations of complex turbulent flows. J. Fluids Eng. ASME 124, 933–942 (2002)CrossRef Fasel, H.F., Seidel, J., Wernz, S.: A methodology for simulations of complex turbulent flows. J. Fluids Eng. ASME 124, 933–942 (2002)CrossRef
17.
Zurück zum Zitat Spalart, P.R., Jou, W., Strelets, M., Allmaras, S.R.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Liu, C., Liu, Z. (eds.) Advances in DNS/LES, pp. 137–147. Greyden Press, Columbus (1997) Spalart, P.R., Jou, W., Strelets, M., Allmaras, S.R.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Liu, C., Liu, Z. (eds.) Advances in DNS/LES, pp. 137–147. Greyden Press, Columbus (1997)
18.
Zurück zum Zitat Travin, A., Shur, M.L., Strelets, M., Spalart, P.: Detached-eddy simulations past a circular cylinder. Flow Turbul. Combust. 63, 293–313 (1999)MATHCrossRef Travin, A., Shur, M.L., Strelets, M., Spalart, P.: Detached-eddy simulations past a circular cylinder. Flow Turbul. Combust. 63, 293–313 (1999)MATHCrossRef
19.
Zurück zum Zitat Spalart, P.R.: Strategies for turbulence modelling and simulations. Int. J. Heat Fluid Flow 21, 252–263 (2000)CrossRef Spalart, P.R.: Strategies for turbulence modelling and simulations. Int. J. Heat Fluid Flow 21, 252–263 (2000)CrossRef
20.
21.
Zurück zum Zitat Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.K., Travin, A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20, 181–195 (2006)MATHCrossRef Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.K., Travin, A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20, 181–195 (2006)MATHCrossRef
22.
Zurück zum Zitat Shur, M.L., Spalart, P., Strelets, M.K., Travin, A.K.: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 29, 1638–1649 (2008)CrossRef Shur, M.L., Spalart, P., Strelets, M.K., Travin, A.K.: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 29, 1638–1649 (2008)CrossRef
23.
Zurück zum Zitat Strelets, M.: Detached eddy simulation of massively separated flows. AIAA paper n ∘ 0879, 1–18 (2001) Strelets, M.: Detached eddy simulation of massively separated flows. AIAA paper n 0879, 1–18 (2001)
24.
Zurück zum Zitat Travin, A., Shur, M.L.: Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows. In: Friedrich, R, Rodi, W. (eds.) Advances in LES of Complex Flows, pp. 239–254. Kluwer Academic Publishers (2002) Travin, A., Shur, M.L.: Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows. In: Friedrich, R, Rodi, W. (eds.) Advances in LES of Complex Flows, pp. 239–254. Kluwer Academic Publishers (2002)
25.
Zurück zum Zitat Menter, F.R., Kuntz, M., Langtry, R.: Ten years of industrial experience with SST turbulence model. Turb. Heat Mass Transf. 4, 625–632 (2003) Menter, F.R., Kuntz, M., Langtry, R.: Ten years of industrial experience with SST turbulence model. Turb. Heat Mass Transf. 4, 625–632 (2003)
26.
Zurück zum Zitat Schiestel, R., Dejoan, A.: Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations. Theor. Comput. Fluid Dyn. 18, 443–468 (2005)MATHCrossRef Schiestel, R., Dejoan, A.: Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations. Theor. Comput. Fluid Dyn. 18, 443–468 (2005)MATHCrossRef
27.
Zurück zum Zitat Chaouat, B., Schiestel, R.: A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows. Phys. Fluids 17(065106), 1–19 (2005)MATHMathSciNet Chaouat, B., Schiestel, R.: A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows. Phys. Fluids 17(065106), 1–19 (2005)MATHMathSciNet
28.
Zurück zum Zitat Chaouat, B., Schiestel, R.: From single-scale turbulence models to multiple-scale and subgrid-scale models by Fourier transform. Theor. Comput. Fluid Dyn. 21, 201–229 (2007)MATHCrossRef Chaouat, B., Schiestel, R.: From single-scale turbulence models to multiple-scale and subgrid-scale models by Fourier transform. Theor. Comput. Fluid Dyn. 21, 201–229 (2007)MATHCrossRef
29.
Zurück zum Zitat Befeno, I., Schiestel, R.: Non-equilibrium mixing of turbulence scales using a continuous hybrid RANS/LES approach: Application to the shearless mixing layer. Flow Turb. Combust. 78, 129–151 (2007)MATHCrossRef Befeno, I., Schiestel, R.: Non-equilibrium mixing of turbulence scales using a continuous hybrid RANS/LES approach: Application to the shearless mixing layer. Flow Turb. Combust. 78, 129–151 (2007)MATHCrossRef
30.
Zurück zum Zitat Chaouat, B., Schiestel, R.: Progress in subgrid-scale transport modelling for continuous hybrid non-zonal RANS/LES simulations. Int. J. Heat Fluid Flow 30, 602–616 (2009)CrossRef Chaouat, B., Schiestel, R.: Progress in subgrid-scale transport modelling for continuous hybrid non-zonal RANS/LES simulations. Int. J. Heat Fluid Flow 30, 602–616 (2009)CrossRef
31.
Zurück zum Zitat Chaouat, B.: Simulation of turbulent rotating flows using a subfilter scale stress model derived from the partially integrated transport modeling method. Phys. Fluids 24(045108), 1–35 (2012) Chaouat, B.: Simulation of turbulent rotating flows using a subfilter scale stress model derived from the partially integrated transport modeling method. Phys. Fluids 24(045108), 1–35 (2012)
32.
Zurück zum Zitat Chaouat, B., Schiestel, R.: Analytical insights into the partially integrated transport modeling method for hybrid Reynolds averaged Navier-Stokes equations-large eddy simulations of turbulent flows. Phys. Fluids 24(085106), 1–34 (2012) Chaouat, B., Schiestel, R.: Analytical insights into the partially integrated transport modeling method for hybrid Reynolds averaged Navier-Stokes equations-large eddy simulations of turbulent flows. Phys. Fluids 24(085106), 1–34 (2012)
33.
Zurück zum Zitat Chaouat, B., Schiestel, R.: Partially integrated transport modeling method for turbulence simulation with variable filters. Phys. Fluids 25(125102), 1–39 (2013)MATH Chaouat, B., Schiestel, R.: Partially integrated transport modeling method for turbulence simulation with variable filters. Phys. Fluids 25(125102), 1–39 (2013)MATH
34.
Zurück zum Zitat Chaouat, B.: Subfilter-scale transport model for hybrid RANS/LES simulations applied to a complex bounded flow. J. Turbul. 11, 1–30 (2010)CrossRef Chaouat, B.: Subfilter-scale transport model for hybrid RANS/LES simulations applied to a complex bounded flow. J. Turbul. 11, 1–30 (2010)CrossRef
35.
Zurück zum Zitat Chaouat, B., Schiestel, R.: Hybrid RANS-LES simulations of the turbulent flow over periodic hills at high Reynolds number using the PITM method. Comput. Fluids 84, 279–300 (2013)MATHMathSciNetCrossRef Chaouat, B., Schiestel, R.: Hybrid RANS-LES simulations of the turbulent flow over periodic hills at high Reynolds number using the PITM method. Comput. Fluids 84, 279–300 (2013)MATHMathSciNetCrossRef
36.
Zurück zum Zitat Chaouat, B.: Application of the PITM method using inlet synthetic turbulence generation for the simulation of the turbulent flow in a small axisymmetric contraction. Flow Turbul. Combust. 98, 987–1024 (2017)CrossRef Chaouat, B.: Application of the PITM method using inlet synthetic turbulence generation for the simulation of the turbulent flow in a small axisymmetric contraction. Flow Turbul. Combust. 98, 987–1024 (2017)CrossRef
37.
Zurück zum Zitat Girimaji, S.S., Srinivasan, R., Jeong, E.: PANS turbulence for seamless transition between RANS and LES: Fixed-point analysis and preliminary results. Proc. ASME FEDSM’03, ASME paper n ∘ 45336, 1–9 (2003) Girimaji, S.S., Srinivasan, R., Jeong, E.: PANS turbulence for seamless transition between RANS and LES: Fixed-point analysis and preliminary results. Proc. ASME FEDSM’03, ASME paper n 45336, 1–9 (2003)
38.
Zurück zum Zitat Girimaji, S.S., Abdol-Hamid, K.: Partially averaged Navier Stokes model for turbulence: Implemantation and validation. AIAA paper n ∘ 0502, 1–14 (2005) Girimaji, S.S., Abdol-Hamid, K.: Partially averaged Navier Stokes model for turbulence: Implemantation and validation. AIAA paper n 0502, 1–14 (2005)
39.
Zurück zum Zitat Girimaji, S.S.: Partially-averaged Navier-Stokes method for turbulence: A Reynolds-averaged Navier-Stokes to direct numerical simulation bridging method. J. Appl. Mech., ASME 73, 413–421 (2006)MATHCrossRef Girimaji, S.S.: Partially-averaged Navier-Stokes method for turbulence: A Reynolds-averaged Navier-Stokes to direct numerical simulation bridging method. J. Appl. Mech., ASME 73, 413–421 (2006)MATHCrossRef
40.
Zurück zum Zitat Girimaji, Jeong, E., Srinivasan, R.: Partially averaged Navier-Stokes method for turbulence: Fixed point analysis and comparisons with unsteady partially averaged Navier-Stokes. J. Appl. Mech., ASME 73, 422–429 (2006)MATHCrossRef Girimaji, Jeong, E., Srinivasan, R.: Partially averaged Navier-Stokes method for turbulence: Fixed point analysis and comparisons with unsteady partially averaged Navier-Stokes. J. Appl. Mech., ASME 73, 422–429 (2006)MATHCrossRef
41.
Zurück zum Zitat Lakshmipathy, S., Girimaji, S.S.: Extension of Bousssinesq turbulence constitutive relation for bridging methods. J. Turbul. 8(31), 1–20 (2007) Lakshmipathy, S., Girimaji, S.S.: Extension of Bousssinesq turbulence constitutive relation for bridging methods. J. Turbul. 8(31), 1–20 (2007)
42.
Zurück zum Zitat Jeong, E., Girimaji, S.S.: Partially averaged Navier-Stokes (PANS) method for turbulence simulations- Flow past a square cylinder. J. Fluids Eng., ASME 132 (1212203), 1–11 (2010) Jeong, E., Girimaji, S.S.: Partially averaged Navier-Stokes (PANS) method for turbulence simulations- Flow past a square cylinder. J. Fluids Eng., ASME 132 (1212203), 1–11 (2010)
43.
Zurück zum Zitat Basara, B., Krajnovic, S., Girimaji, S., Pavlovic, Z.: Near-wall formulation of the partially averaged Navier-Stokes turbulence model. AIAA J. 42(12), 2627–2636 (2011)CrossRef Basara, B., Krajnovic, S., Girimaji, S., Pavlovic, Z.: Near-wall formulation of the partially averaged Navier-Stokes turbulence model. AIAA J. 42(12), 2627–2636 (2011)CrossRef
44.
Zurück zum Zitat Krajnovic, S., Lárusson, R., Basara, B.: Superiority of PANS compared to LES in predicting a rudimentary landing gear flow with affordable meshes. Int. J. Heat Fluid Flow 37, 109–122 (2012)CrossRef Krajnovic, S., Lárusson, R., Basara, B.: Superiority of PANS compared to LES in predicting a rudimentary landing gear flow with affordable meshes. Int. J. Heat Fluid Flow 37, 109–122 (2012)CrossRef
45.
Zurück zum Zitat Foroutan, H., Yavuzkurt, S.: A partially averaged Navier Stokes model for the simulation of turbulent swirling flow with vortex breakdown. Int. J. Heat Fluid Flow 50, 402–416 (2014)CrossRef Foroutan, H., Yavuzkurt, S.: A partially averaged Navier Stokes model for the simulation of turbulent swirling flow with vortex breakdown. Int. J. Heat Fluid Flow 50, 402–416 (2014)CrossRef
46.
Zurück zum Zitat Menter, F.R., Egorov, Y.: A scale-adaptive simulation model using two-equation models. AIAA paper n ∘ 1095, 1–13 (2005) Menter, F.R., Egorov, Y.: A scale-adaptive simulation model using two-equation models. AIAA paper n 1095, 1–13 (2005)
47.
Zurück zum Zitat Menter, F.R., Egorov, Y.: The scale-adaptive simulation method for unsteady turbulent flow prediction: Part 1: Theory and model description. Flow Turbul. Combust. 85, 113–138 (2010)MATHCrossRef Menter, F.R., Egorov, Y.: The scale-adaptive simulation method for unsteady turbulent flow prediction: Part 1: Theory and model description. Flow Turbul. Combust. 85, 113–138 (2010)MATHCrossRef
48.
Zurück zum Zitat Egorov, Y, Menter, F.R., Lechner, R., Cokljat, D.: The scale-adaptive simulation method for unsteady turbulent flow prediction: Part 2: Application to complex flows. Flow Turbul. Combust. 85, 139–165 (2010)MATHCrossRef Egorov, Y, Menter, F.R., Lechner, R., Cokljat, D.: The scale-adaptive simulation method for unsteady turbulent flow prediction: Part 2: Application to complex flows. Flow Turbul. Combust. 85, 139–165 (2010)MATHCrossRef
49.
Zurück zum Zitat Hanjalic, K., Hadz̆iabdic, M., Temmerman, L., Leschziner, M.: Merging LES and RANS strategies: Zonal or seamless coupling? In: Friedrich, R., Geurts, B., Métais, O. (eds.) Direct and Large Eddy Simulation, V, pp. 451–464. Kluwer Academic Publishers (2004) Hanjalic, K., Hadz̆iabdic, M., Temmerman, L., Leschziner, M.: Merging LES and RANS strategies: Zonal or seamless coupling? In: Friedrich, R., Geurts, B., Métais, O. (eds.) Direct and Large Eddy Simulation, V, pp. 451–464. Kluwer Academic Publishers (2004)
50.
Zurück zum Zitat Hanjalic, K.: Will RANS survive LES? A view of perspectives. J. Fluids Eng., ASME 127, 831–839 (2005)CrossRef Hanjalic, K.: Will RANS survive LES? A view of perspectives. J. Fluids Eng., ASME 127, 831–839 (2005)CrossRef
51.
Zurück zum Zitat Hanjalic, K., Kenjeres, S.S.: Some developments in turbulence modeling for wind and environmental engineering. J. Wind Eng Indus Aerodyn 96, 1537–1570 (2008)CrossRef Hanjalic, K., Kenjeres, S.S.: Some developments in turbulence modeling for wind and environmental engineering. J. Wind Eng Indus Aerodyn 96, 1537–1570 (2008)CrossRef
52.
Zurück zum Zitat Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)MATHCrossRef Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)MATHCrossRef
53.
Zurück zum Zitat Moser, R., Kim, J., Mansour, N.: Direct numerical simulation of turbulent channel up to R e τ = 590. Phys. Fluids 11(4), 943–945 (1999)MATHCrossRef Moser, R., Kim, J., Mansour, N.: Direct numerical simulation of turbulent channel up to R e τ = 590. Phys. Fluids 11(4), 943–945 (1999)MATHCrossRef
54.
Zurück zum Zitat Hoyas, S., Jimenez, J.: Scalling of velocity fluctuations in turbulent channels up to R e τ = 2003. Phys. Fluids 18(011702), 1–4 (2006) Hoyas, S., Jimenez, J.: Scalling of velocity fluctuations in turbulent channels up to R e τ = 2003. Phys. Fluids 18(011702), 1–4 (2006)
55.
Zurück zum Zitat Kaneda, Y., Ishihara, T.: High-resolution direct numerical simulation of turbulence. J. Turbul. 7, 1–17 (2006)MathSciNetCrossRef Kaneda, Y., Ishihara, T.: High-resolution direct numerical simulation of turbulence. J. Turbul. 7, 1–17 (2006)MathSciNetCrossRef
56.
Zurück zum Zitat Speziale, C.G.: Analytical methods for the development of Reynolds stress closures in turbulence. Ann. Rev J. Fluid Mech. 23, 107–157 (1991)MATHMathSciNetCrossRef Speziale, C.G.: Analytical methods for the development of Reynolds stress closures in turbulence. Ann. Rev J. Fluid Mech. 23, 107–157 (1991)MATHMathSciNetCrossRef
57.
Zurück zum Zitat Launder, B.E.: Second moment closure: Present and future. Int. J. Heat Fluid Flow 20(4), 282–300 (1989)CrossRef Launder, B.E.: Second moment closure: Present and future. Int. J. Heat Fluid Flow 20(4), 282–300 (1989)CrossRef
58.
Zurück zum Zitat Gatski, T.B., Speziale, C.G.: On explicit algebraic stress models for complex turbulent flows. J. Fluid Mech. 254, 59–78 (1993)MATHMathSciNetCrossRef Gatski, T.B., Speziale, C.G.: On explicit algebraic stress models for complex turbulent flows. J. Fluid Mech. 254, 59–78 (1993)MATHMathSciNetCrossRef
59.
Zurück zum Zitat Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. AIAA paper n ∘ 0439, 1–22 (1992) Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. AIAA paper n 0439, 1–22 (1992)
60.
Zurück zum Zitat Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. La recherche Aérospatiale 94(1), 5–21 (1994) Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. La recherche Aérospatiale 94(1), 5–21 (1994)
61.
Zurück zum Zitat Jones, W.P., Launder, B.E.: The prediction of laminarization with of turbulence. Int. J. Heat Mass Transfer 15, 301–314 (1972)CrossRef Jones, W.P., Launder, B.E.: The prediction of laminarization with of turbulence. Int. J. Heat Mass Transfer 15, 301–314 (1972)CrossRef
62.
63.
Zurück zum Zitat Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering application. AIAA J. 32(8), 1598–1605 (1994)CrossRef Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering application. AIAA J. 32(8), 1598–1605 (1994)CrossRef
64.
Zurück zum Zitat Hanjalic, K., Launder, B.E.: A Reynolds stress model of turbulence and its application to thin shear flow. J. Fluid Mech. 52, 609–638 (1972)MATHCrossRef Hanjalic, K., Launder, B.E.: A Reynolds stress model of turbulence and its application to thin shear flow. J. Fluid Mech. 52, 609–638 (1972)MATHCrossRef
65.
Zurück zum Zitat Launder, B.E., Reece, G.J., Rodi, W.: Progress in the development of a Reynolds stress turbulence closure. J. Fluid Mech. 68, 537–566 (1975)MATHCrossRef Launder, B.E., Reece, G.J., Rodi, W.: Progress in the development of a Reynolds stress turbulence closure. J. Fluid Mech. 68, 537–566 (1975)MATHCrossRef
67.
Zurück zum Zitat Crow, S.C.: Viscoelastic properties of the fine-grained incompressible turbulence. J. Fluid Mech. 33, 1–20 (1968)MATHCrossRef Crow, S.C.: Viscoelastic properties of the fine-grained incompressible turbulence. J. Fluid Mech. 33, 1–20 (1968)MATHCrossRef
68.
Zurück zum Zitat Speziale, C.G., Sarkar, S., Gatski, T.B.: Modelling the pressure-strain correlation of turbulence: an invariant dynamical approach. J. Fluid Mech. 227, 245–272 (1991)MATHCrossRef Speziale, C.G., Sarkar, S., Gatski, T.B.: Modelling the pressure-strain correlation of turbulence: an invariant dynamical approach. J. Fluid Mech. 227, 245–272 (1991)MATHCrossRef
69.
Zurück zum Zitat Gatski, T.B.: Second-moment and scalar flux representations in engineering and geophysical flows. Fluid Dyn. Res. 41(012202), 1–24 (2009)MATH Gatski, T.B.: Second-moment and scalar flux representations in engineering and geophysical flows. Fluid Dyn. Res. 41(012202), 1–24 (2009)MATH
70.
Zurück zum Zitat Lesieur, M., Metais, O.: New trends in large-eddy simulations of turbulence. Ann. Rev J. Fluid Mech. 28, 45–82 (1996)MathSciNetCrossRef Lesieur, M., Metais, O.: New trends in large-eddy simulations of turbulence. Ann. Rev J. Fluid Mech. 28, 45–82 (1996)MathSciNetCrossRef
71.
Zurück zum Zitat Piomelli, U.: Large eddy simulation: Achievement and challenges. Progress Aeros. Sci. 35, 335–362 (1999)CrossRef Piomelli, U.: Large eddy simulation: Achievement and challenges. Progress Aeros. Sci. 35, 335–362 (1999)CrossRef
72.
Zurück zum Zitat Hinze, J.O.: Turbulence. Mc Graw-Hill, New York (1975) Hinze, J.O.: Turbulence. Mc Graw-Hill, New York (1975)
73.
Zurück zum Zitat Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91, 99–165 (1963)CrossRef Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91, 99–165 (1963)CrossRef
74.
Zurück zum Zitat Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7), 1760–1765 (1991)MATHCrossRef Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7), 1760–1765 (1991)MATHCrossRef
75.
Zurück zum Zitat Lilly, D.K.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 3, 633–635 (1992)CrossRef Lilly, D.K.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 3, 633–635 (1992)CrossRef
76.
Zurück zum Zitat Métais, O.M., Lesieur, L.: Spectral large-eddy simulation of isotropic and stably stratified turbulence. J. Fluid Mech. 239, 157–194 (1992)MATHMathSciNetCrossRef Métais, O.M., Lesieur, L.: Spectral large-eddy simulation of isotropic and stably stratified turbulence. J. Fluid Mech. 239, 157–194 (1992)MATHMathSciNetCrossRef
77.
Zurück zum Zitat Schumann, U.: Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18, 376–404 (1975)MATHCrossRef Schumann, U.: Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18, 376–404 (1975)MATHCrossRef
78.
Zurück zum Zitat Yoshizawa, A., Horiuti, K.: A statistically derived subgrid scale kinetic model for the large-eddy simulation of turbulent flows. J. Phys. Soc. Jpn. 54(8), 2834–2835 (1985)CrossRef Yoshizawa, A., Horiuti, K.: A statistically derived subgrid scale kinetic model for the large-eddy simulation of turbulent flows. J. Phys. Soc. Jpn. 54(8), 2834–2835 (1985)CrossRef
79.
Zurück zum Zitat Horiuti, K.: Large eddy simulation of turbulent channel flow by one-equation modeling. J. Phys. Soc. Jpn 54(8), 2855–2865 (1985)CrossRef Horiuti, K.: Large eddy simulation of turbulent channel flow by one-equation modeling. J. Phys. Soc. Jpn 54(8), 2855–2865 (1985)CrossRef
80.
Zurück zum Zitat Deardorff, J.W.: The use of subgrid transport equations in a three-dimensional model of atmospheric turbulence. J. Fluids Eng., ASME 95, 429–438 (1973)CrossRef Deardorff, J.W.: The use of subgrid transport equations in a three-dimensional model of atmospheric turbulence. J. Fluids Eng., ASME 95, 429–438 (1973)CrossRef
81.
Zurück zum Zitat Deardorff, J.W.: Three-dimensional numerical study of the height and mean structure of heated planetary boundary layer. Bound.-Layer Meteorol. 7, 81–106 (1974)CrossRef Deardorff, J.W.: Three-dimensional numerical study of the height and mean structure of heated planetary boundary layer. Bound.-Layer Meteorol. 7, 81–106 (1974)CrossRef
82.
83.
Zurück zum Zitat Piomelli, U., Balaras, E., Pasinato, H., Squires, K.D., Spalart, P.: The inner-outer-layer interface in large-eddy simulations with wall-layer models. Int. J. Heat Fluid Flow 24, 538–550 (2003)CrossRef Piomelli, U., Balaras, E., Pasinato, H., Squires, K.D., Spalart, P.: The inner-outer-layer interface in large-eddy simulations with wall-layer models. Int. J. Heat Fluid Flow 24, 538–550 (2003)CrossRef
84.
Zurück zum Zitat Piomelli, U.: Wall-layer models for large-eddy simulations. Prog. Aerosp. Sci. 44, 437–446 (2008)CrossRef Piomelli, U.: Wall-layer models for large-eddy simulations. Prog. Aerosp. Sci. 44, 437–446 (2008)CrossRef
85.
Zurück zum Zitat Temmerman, L., Leschziner, M., Mellen, C.P., Fröhlich, J.: Investigation of a wall-function approximations and subgrid-scale models in large eddy simulation of separated flow in a channel with streamwise periodic constrictions. Int. J. Heat Fluid Flow 24, 157–180 (2003)CrossRef Temmerman, L., Leschziner, M., Mellen, C.P., Fröhlich, J.: Investigation of a wall-function approximations and subgrid-scale models in large eddy simulation of separated flow in a channel with streamwise periodic constrictions. Int. J. Heat Fluid Flow 24, 157–180 (2003)CrossRef
86.
Zurück zum Zitat Ballaras, E., Benocci, C., Piomelli, U.: Two-layer approximate boundary conditions for large-eddy simulations. AIAA J. 34, 1111–1119 (1996)MATHCrossRef Ballaras, E., Benocci, C., Piomelli, U.: Two-layer approximate boundary conditions for large-eddy simulations. AIAA J. 34, 1111–1119 (1996)MATHCrossRef
87.
Zurück zum Zitat Schiestel, R.: Sur le concept d’échelles multiples en modélisation des écoulements turbulents, Part I. J. Theor. Appl. Mech. 2(3), 417–449 (1983)MATH Schiestel, R.: Sur le concept d’échelles multiples en modélisation des écoulements turbulents, Part I. J. Theor. Appl. Mech. 2(3), 417–449 (1983)MATH
88.
Zurück zum Zitat Schiestel, R.: Sur le concept d’échelles multiples en modélisation des écoulements turbulents, Part II. J. Theor. Appl. Mech. 2(4), 601–628 (1983)MATH Schiestel, R.: Sur le concept d’échelles multiples en modélisation des écoulements turbulents, Part II. J. Theor. Appl. Mech. 2(4), 601–628 (1983)MATH
89.
Zurück zum Zitat Pruett, C.D., Gatski, T.B., Grosch, C.E., Thacker, W.D.: The temporally filtered Navier-Stokes equations: Properties of the residual stress. Phys. Fluids 15, 2127–2140 (2003)MATHCrossRef Pruett, C.D., Gatski, T.B., Grosch, C.E., Thacker, W.D.: The temporally filtered Navier-Stokes equations: Properties of the residual stress. Phys. Fluids 15, 2127–2140 (2003)MATHCrossRef
90.
Zurück zum Zitat Iovieno, M., Tordella, D.: Variable scale filtered Navier-Stokes equations: a new procedure to deal with the associated commutation error. Phys. Fluids 15, 1926–1936 (2003)MATHMathSciNetCrossRef Iovieno, M., Tordella, D.: Variable scale filtered Navier-Stokes equations: a new procedure to deal with the associated commutation error. Phys. Fluids 15, 1926–1936 (2003)MATHMathSciNetCrossRef
91.
Zurück zum Zitat Lilly, D.K.: The representation of small scale turbulence in numerical simulation experiments. In: IBM (ed.) Proceedings of the IBM Scientific Symposium on Environmental Sciences, pp. 195–210 (1967) Lilly, D.K.: The representation of small scale turbulence in numerical simulation experiments. In: IBM (ed.) Proceedings of the IBM Scientific Symposium on Environmental Sciences, pp. 195–210 (1967)
94.
Zurück zum Zitat Dejoan, A., Schiestel, R.: LES, of unsteady turbulence via a one-equation subgrid-scale transport model. Int. J. Heat Fluid Flow 23, 398–412 (2002)CrossRef Dejoan, A., Schiestel, R.: LES, of unsteady turbulence via a one-equation subgrid-scale transport model. Int. J. Heat Fluid Flow 23, 398–412 (2002)CrossRef
95.
Zurück zum Zitat Donaldson, C.: Calculation of turbulent shear flows for atmospheric and vortex motions. AIAA J. 10(1), 4–12 (1972)MATHCrossRef Donaldson, C.: Calculation of turbulent shear flows for atmospheric and vortex motions. AIAA J. 10(1), 4–12 (1972)MATHCrossRef
96.
97.
Zurück zum Zitat Cambon, C., Jeandel, D., Mathieu, J.: Spectral modelling of homogeneous non-isotropic turbulence. J. Fluid Mech. 104, 247–262 (1981)MATHCrossRef Cambon, C., Jeandel, D., Mathieu, J.: Spectral modelling of homogeneous non-isotropic turbulence. J. Fluid Mech. 104, 247–262 (1981)MATHCrossRef
98.
Zurück zum Zitat Schiestel, R.: Multiple-time scale modeling of turbulent flows in one point closures. Phys. Fluids 30, 722–731 (1987)MATHCrossRef Schiestel, R.: Multiple-time scale modeling of turbulent flows in one point closures. Phys. Fluids 30, 722–731 (1987)MATHCrossRef
99.
Zurück zum Zitat Schiestel, R., Elena, L.: Modeling of anisotropic turbulence in rapid rotation. Aerosp. Sci. Technol. 7, 441–451 (1997)MATHCrossRef Schiestel, R., Elena, L.: Modeling of anisotropic turbulence in rapid rotation. Aerosp. Sci. Technol. 7, 441–451 (1997)MATHCrossRef
100.
Zurück zum Zitat Hanjalic, K., Launder, B.E., Schiestel, R.: Multiple-time scale concepts in turbulent transport modelling. In: Springer Verlag (ed) Proceedings of the 2th Symposium on Turbulence Shear Flow, pp. 36–49 (1980) Hanjalic, K., Launder, B.E., Schiestel, R.: Multiple-time scale concepts in turbulent transport modelling. In: Springer Verlag (ed) Proceedings of the 2th Symposium on Turbulence Shear Flow, pp. 36–49 (1980)
101.
Zurück zum Zitat Hamba, F.: An attempt to combine large eddy simulation with the k − 𝜖 model in a channel-flow calculation. Theor. Comput. Fluid Dyn. 14, 323–336 (2001)MATHCrossRef Hamba, F.: An attempt to combine large eddy simulation with the k𝜖 model in a channel-flow calculation. Theor. Comput. Fluid Dyn. 14, 323–336 (2001)MATHCrossRef
102.
Zurück zum Zitat Hamba, F.: A hybrid RANS/LES simulation of turbulent channel flow. Theor. Comput. Fluid Dyn. 03, 387–403 (2003)MATHCrossRef Hamba, F.: A hybrid RANS/LES simulation of turbulent channel flow. Theor. Comput. Fluid Dyn. 03, 387–403 (2003)MATHCrossRef
103.
Zurück zum Zitat Davidson, L., Peng, S.H.: Hybrid LES-RANS modelling: A one-equation SGS model combined with a k − ω model for predicting recirculating flows. Int. J. Numer. Meth. Fluids 43, 1003–1018 (2003)MATHCrossRef Davidson, L., Peng, S.H.: Hybrid LES-RANS modelling: A one-equation SGS model combined with a kω model for predicting recirculating flows. Int. J. Numer. Meth. Fluids 43, 1003–1018 (2003)MATHCrossRef
104.
Zurück zum Zitat Temmerman, L., Hadz̆iabdic, M., Leschziner, M.A., Hanjalic, K.: A hybrid two-layer URANS-LES approach for large eddy simulation at high Reynolds numbers. Int. J. Heat Fluid Flow 26, 173–190 (2005)CrossRef Temmerman, L., Hadz̆iabdic, M., Leschziner, M.A., Hanjalic, K.: A hybrid two-layer URANS-LES approach for large eddy simulation at high Reynolds numbers. Int. J. Heat Fluid Flow 26, 173–190 (2005)CrossRef
105.
Zurück zum Zitat Jaffrézic, B., Breuer, M.: Application of an explicit algebraic Reynolds stress model within a hybrid LES-RANS method. Flow Turbul. Combust. 81, 415–448 (2008)MATHCrossRef Jaffrézic, B., Breuer, M.: Application of an explicit algebraic Reynolds stress model within a hybrid LES-RANS method. Flow Turbul. Combust. 81, 415–448 (2008)MATHCrossRef
106.
Zurück zum Zitat Schmidt, S., Breuer, M.: Hybrid LES-URANS methodology for the prediction of non-equilibrium wall-bounded internal and external flows. Comput. Fluids 96, 226–252 (2014)MathSciNetCrossRef Schmidt, S., Breuer, M.: Hybrid LES-URANS methodology for the prediction of non-equilibrium wall-bounded internal and external flows. Comput. Fluids 96, 226–252 (2014)MathSciNetCrossRef
107.
Zurück zum Zitat Batten, P., Golberg, U., Chakravarthy, S.: Interfacing statistical turbulence closures with large-eddy simulation. AIAA J. 42, 485–492 (2004)CrossRef Batten, P., Golberg, U., Chakravarthy, S.: Interfacing statistical turbulence closures with large-eddy simulation. AIAA J. 42, 485–492 (2004)CrossRef
108.
Zurück zum Zitat Tessicini, F., Temmerman, L., Leschziner, M.A.: Approximate near-wall treatments based on zonal and hybrid RANS,-LES methods for LES at high Reynolds numbers. Int. J. Heat Fluid Flow 27, 789–799 (2006)CrossRef Tessicini, F., Temmerman, L., Leschziner, M.A.: Approximate near-wall treatments based on zonal and hybrid RANS,-LES methods for LES at high Reynolds numbers. Int. J. Heat Fluid Flow 27, 789–799 (2006)CrossRef
109.
Zurück zum Zitat Hamba, F.: Log-layer mismatch and commutation error in hybrid RANS/LES simulation of channel flow. Int. J. Heat Fluid Flow 30, 20–31 (2009)CrossRef Hamba, F.: Log-layer mismatch and commutation error in hybrid RANS/LES simulation of channel flow. Int. J. Heat Fluid Flow 30, 20–31 (2009)CrossRef
110.
Zurück zum Zitat Davidson, L., Billson, M.: Hybrid LES-RANS using synthesized turbulent fluctuations for forcing in the interface region. Int. J. Heat Fluid Flow 27, 1028–1042 (2006)CrossRef Davidson, L., Billson, M.: Hybrid LES-RANS using synthesized turbulent fluctuations for forcing in the interface region. Int. J. Heat Fluid Flow 27, 1028–1042 (2006)CrossRef
111.
Zurück zum Zitat Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: Synthetic turbulence generators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems. Flow Turbul. Combust. 93, 63–92 (2014)CrossRef Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: Synthetic turbulence generators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems. Flow Turbul. Combust. 93, 63–92 (2014)CrossRef
112.
Zurück zum Zitat Fadai-Ghotbi, A., Friess, C., Manceau, R., Gatski, T.B., Borée, J.: Temporal filtering: A consistent formalism for seamless hybrid RANS-LES modeling in inhomogeneous turbulence. Int. J. Heat Fluid Flow 31, 378–389 (2010)MATHCrossRef Fadai-Ghotbi, A., Friess, C., Manceau, R., Gatski, T.B., Borée, J.: Temporal filtering: A consistent formalism for seamless hybrid RANS-LES modeling in inhomogeneous turbulence. Int. J. Heat Fluid Flow 31, 378–389 (2010)MATHCrossRef
113.
Zurück zum Zitat Fadai-Ghotbi, A., Friess, C., Manceau, R., Borée, J.: A seamless hybrid RANS-LES model based on transport equations for the subgrid stressses and ellipting blending. Phys. Fluids 22(055104), 1–19 (2010)MATH Fadai-Ghotbi, A., Friess, C., Manceau, R., Borée, J.: A seamless hybrid RANS-LES model based on transport equations for the subgrid stressses and ellipting blending. Phys. Fluids 22(055104), 1–19 (2010)MATH
114.
Zurück zum Zitat Walters, D. K., Bhushan, S., Alam, M.F., Thompson, D.S.: Investigation of a dynamic hybrid RANS/LES modelling methodology for finite-volume CFD simulations. Flow Turbul. Combust. 91, 643–667 (2013)CrossRef Walters, D. K., Bhushan, S., Alam, M.F., Thompson, D.S.: Investigation of a dynamic hybrid RANS/LES modelling methodology for finite-volume CFD simulations. Flow Turbul. Combust. 91, 643–667 (2013)CrossRef
115.
Zurück zum Zitat Menter, F.R.: A new paradigm in hybrid RANS-LES modeling. In: Proceedings of the 6th Symposium on Hybrid RANS-LES Methods, pp. 1–17 (2016) Menter, F.R.: A new paradigm in hybrid RANS-LES modeling. In: Proceedings of the 6th Symposium on Hybrid RANS-LES Methods, pp. 1–17 (2016)
116.
Zurück zum Zitat Hsieh, K., Lien, F., Yee, E.: Towards a unified turbulence simulation approach for wall-bounded flows. Flow Turbul. Combust. 84, 193–218 (2010)MATHCrossRef Hsieh, K., Lien, F., Yee, E.: Towards a unified turbulence simulation approach for wall-bounded flows. Flow Turbul. Combust. 84, 193–218 (2010)MATHCrossRef
117.
Zurück zum Zitat Han, X., Krajnović, S.: An efficient very large eddy simulation model for simulation of turbulent flow. Int. J. Numer. Meth. Fluids 71, 1341–1360 (2013)MathSciNetCrossRef Han, X., Krajnović, S.: An efficient very large eddy simulation model for simulation of turbulent flow. Int. J. Numer. Meth. Fluids 71, 1341–1360 (2013)MathSciNetCrossRef
118.
Zurück zum Zitat Han, X., Krajnović, S.: Validation of a novel very large eddy simulation method for simulation of turbulent separated flow. Int. J. Numer. Meth. Fluids 73, 436–461 (2013)MathSciNetCrossRef Han, X., Krajnović, S.: Validation of a novel very large eddy simulation method for simulation of turbulent separated flow. Int. J. Numer. Meth. Fluids 73, 436–461 (2013)MathSciNetCrossRef
119.
Zurück zum Zitat Han, X., Krajnović, S.: Very-large eddy simulation based on k − ω model. AIAA J. 53, 1103–1108 (2015)CrossRef Han, X., Krajnović, S.: Very-large eddy simulation based on kω model. AIAA J. 53, 1103–1108 (2015)CrossRef
120.
Zurück zum Zitat Forsythe, J.R., Squires, K.D., Wurtzler, K.E., Spalart, P.R.: Detached-eddy simulation of the F-15E at high alpha. J. Aircraft 41(2), 193–200 (2005)CrossRef Forsythe, J.R., Squires, K.D., Wurtzler, K.E., Spalart, P.R.: Detached-eddy simulation of the F-15E at high alpha. J. Aircraft 41(2), 193–200 (2005)CrossRef
121.
Zurück zum Zitat Spalart, P.R., Shur, M., Strelets, M., Travin, A.K.: Initial noise predictions for rudimentary landing gear. J. Sound Vib. 320, 4180–4195 (2011)CrossRef Spalart, P.R., Shur, M., Strelets, M., Travin, A.K.: Initial noise predictions for rudimentary landing gear. J. Sound Vib. 320, 4180–4195 (2011)CrossRef
122.
Zurück zum Zitat Garbaruk, A.V., Shur, M., Strelets, M.: DDES and IDDES of tandem cylinders. In: Proceedings of the Benchmark Problems for Airframe Noise Computations BANC (2010) Garbaruk, A.V., Shur, M., Strelets, M.: DDES and IDDES of tandem cylinders. In: Proceedings of the Benchmark Problems for Airframe Noise Computations BANC (2010)
123.
Zurück zum Zitat Garbaruk, A., Spalart, P.R., Strelets, M., Shur, M.L.: Flow and noise prediction for tandem cylinder. Matematicheskoe Modelirovanie 26(6), 119–136 (2014)MATH Garbaruk, A., Spalart, P.R., Strelets, M., Shur, M.L.: Flow and noise prediction for tandem cylinder. Matematicheskoe Modelirovanie 26(6), 119–136 (2014)MATH
124.
Zurück zum Zitat Greschner, B., Grillat, J., Jacob, M.C., Thiele, F.: Measurements and wall modeled LES simulation of trailing edge noise caused by a turbulent boundary layer. Int. J. Aeroacoustics 9, 329–355 (2010)CrossRef Greschner, B., Grillat, J., Jacob, M.C., Thiele, F.: Measurements and wall modeled LES simulation of trailing edge noise caused by a turbulent boundary layer. Int. J. Aeroacoustics 9, 329–355 (2010)CrossRef
125.
Zurück zum Zitat Deck, S.: Zonal-detached-eddy simulation of the flow around a high-lift configuration. AIAA J. 43(11), 2372–2384 (2005)CrossRef Deck, S.: Zonal-detached-eddy simulation of the flow around a high-lift configuration. AIAA J. 43(11), 2372–2384 (2005)CrossRef
126.
Zurück zum Zitat Deck, S.: Recent improvements in the zonal detached eddy simulation ZDES formulation. Theor. Comput. Fluid Dyn. 26, 521–550 (2012)CrossRef Deck, S.: Recent improvements in the zonal detached eddy simulation ZDES formulation. Theor. Comput. Fluid Dyn. 26, 521–550 (2012)CrossRef
127.
Zurück zum Zitat Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: An enhanced version of DES with rapid transition from RANS to LES in separated flows. Flow, Turbul. Combust. 95, 709–737 (2015)CrossRef Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: An enhanced version of DES with rapid transition from RANS to LES in separated flows. Flow, Turbul. Combust. 95, 709–737 (2015)CrossRef
128.
Zurück zum Zitat Nikitin, N.V., Nicoud, F., Wasistho, B., Squires, K.D., Spalart, P.R.: An approach to wall modeling in large-eddy simulations. Phys. Fluids 12, 1629–1632 (2000)MATHCrossRef Nikitin, N.V., Nicoud, F., Wasistho, B., Squires, K.D., Spalart, P.R.: An approach to wall modeling in large-eddy simulations. Phys. Fluids 12, 1629–1632 (2000)MATHCrossRef
129.
Zurück zum Zitat Garbaruk, A., Strelets, M., Shur, M., Dyadkin, A., Rybak, S.: Numerical investigation of turbulent wake of the nozzles of a launch escape system and computation of pressure fluctuations on the surface of the crew module at different flight conditions. In: Book of Abstracts of 6th All-Russian Conference, Computational Experiment in Aeroacoustics, pp. 95–99. Svetlogorsk (2016) Garbaruk, A., Strelets, M., Shur, M., Dyadkin, A., Rybak, S.: Numerical investigation of turbulent wake of the nozzles of a launch escape system and computation of pressure fluctuations on the surface of the crew module at different flight conditions. In: Book of Abstracts of 6th All-Russian Conference, Computational Experiment in Aeroacoustics, pp. 95–99. Svetlogorsk (2016)
130.
Zurück zum Zitat Kubacki, S., Dick, E.: Simulation of plane impinging jets with k − ω based hybrid RANS/LES models. Int. J. Heat Fluid Flow 31, 862–878 (2010)CrossRef Kubacki, S., Dick, E.: Simulation of plane impinging jets with kω based hybrid RANS/LES models. Int. J. Heat Fluid Flow 31, 862–878 (2010)CrossRef
131.
Zurück zum Zitat Gritskevich, M.S., Garbaruk, A.V, Schutze, J., Menter, F.R.: Development of DDES and IDDES formulations for the k − ω shear stress transport model. Flow Turbul. Combust. 88, 431–449 (2012)MATHCrossRef Gritskevich, M.S., Garbaruk, A.V, Schutze, J., Menter, F.R.: Development of DDES and IDDES formulations for the kω shear stress transport model. Flow Turbul. Combust. 88, 431–449 (2012)MATHCrossRef
132.
Zurück zum Zitat Kenjeres, S., Hanjalic, K.: LES, T-RANS and hybrid simulations of thermal convection at high R a numbers. Int. J. Heat Fluid Flow 27, 800–810 (2006)CrossRef Kenjeres, S., Hanjalic, K.: LES, T-RANS and hybrid simulations of thermal convection at high R a numbers. Int. J. Heat Fluid Flow 27, 800–810 (2006)CrossRef
133.
Zurück zum Zitat Jakirlic, S., Saric, S., Kadavelil, G., Sirbubalo, E., Basara, B., Chaouat, B: SGS modelling in LES of wall-bounded flow using transport RANS model: From a zonal to a seamless hybrid LES/RANS method. In: Seoul National University (ed.) Proceedings of the 6th Symposium on Turbulence Shear Flow Phenomena, vol. 3, pp. 1057–1062 (2009) Jakirlic, S., Saric, S., Kadavelil, G., Sirbubalo, E., Basara, B., Chaouat, B: SGS modelling in LES of wall-bounded flow using transport RANS model: From a zonal to a seamless hybrid LES/RANS method. In: Seoul National University (ed.) Proceedings of the 6th Symposium on Turbulence Shear Flow Phenomena, vol. 3, pp. 1057–1062 (2009)
134.
Zurück zum Zitat Friess, C., Manceau, R., Gatski, T.B.: Toward an equivalence criterion for hybrid RANS/LES methods. Comput. Fluids 122, 233–246 (2015)MathSciNetCrossRef Friess, C., Manceau, R., Gatski, T.B.: Toward an equivalence criterion for hybrid RANS/LES methods. Comput. Fluids 122, 233–246 (2015)MathSciNetCrossRef
135.
Zurück zum Zitat Stoellinger, M., Roy, R., Heinz, S.: Unified RANS-LES method based on second-order closure. In: The University of Melbourne (ed.) Proceedings of the 9th Symposium on Turbulence Shear Flow Phenomena, vol. 7B5, pp. 1–6 (2015) Stoellinger, M., Roy, R., Heinz, S.: Unified RANS-LES method based on second-order closure. In: The University of Melbourne (ed.) Proceedings of the 9th Symposium on Turbulence Shear Flow Phenomena, vol. 7B5, pp. 1–6 (2015)
136.
Zurück zum Zitat Apte, S.A., Yang, V.: A large-eddy simulation study of transition and flow instability in a porous-walled chamber with mass injection. J. Fluid Mech. 477, 215–225 (2003)MATHCrossRef Apte, S.A., Yang, V.: A large-eddy simulation study of transition and flow instability in a porous-walled chamber with mass injection. J. Fluid Mech. 477, 215–225 (2003)MATHCrossRef
137.
Zurück zum Zitat Avalon, G., Casalis, G., Griffond, J.: Flow instabilities and acoustic resonance of channels with wall injection. AIAA paper n ∘ 3218, 1–11 (1998) Avalon, G., Casalis, G., Griffond, J.: Flow instabilities and acoustic resonance of channels with wall injection. AIAA paper n 3218, 1–11 (1998)
138.
Zurück zum Zitat Lamballais, E., Métais, O., Lesieur, M.: Spectral-dynamic model for large-eddy simulations of turbulent rotating flow. Theor. Comput. Fluid Dyn. 12, 149–179 (1998)MATHCrossRef Lamballais, E., Métais, O., Lesieur, M.: Spectral-dynamic model for large-eddy simulations of turbulent rotating flow. Theor. Comput. Fluid Dyn. 12, 149–179 (1998)MATHCrossRef
140.
Zurück zum Zitat Rapp, C., Manhart, M.: Flow over periodic hills - an experimental study. Exp. Fluids 51, 247–269 (2011)CrossRef Rapp, C., Manhart, M.: Flow over periodic hills - an experimental study. Exp. Fluids 51, 247–269 (2011)CrossRef
141.
Zurück zum Zitat Wengle, H., Schiestel, R., Befeno, I., Meri, A.: Large-eddy simulations of the spatial development of a shearless turbulence mixing layer Numerical Flow Simulation III, vol. 82, pp. 271–289. Springer, Berlin (2003)CrossRef Wengle, H., Schiestel, R., Befeno, I., Meri, A.: Large-eddy simulations of the spatial development of a shearless turbulence mixing layer Numerical Flow Simulation III, vol. 82, pp. 271–289. Springer, Berlin (2003)CrossRef
142.
Zurück zum Zitat Fröhlich, J., Mellen, C.P., Rodi, W., Temmerman, L., Leschziner, M.A.: Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 526, 19–66 (2005)MATHMathSciNetCrossRef Fröhlich, J., Mellen, C.P., Rodi, W., Temmerman, L., Leschziner, M.A.: Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 526, 19–66 (2005)MATHMathSciNetCrossRef
143.
Zurück zum Zitat Breuer, M., Peller, N., Rapp, C.h., Manhart, M.: Flow over periodic hills. Numerical and experimental study in a wide range of Reynolds numbers. Comput. Fluids 38, 433–457 (2009)MATHCrossRef Breuer, M., Peller, N., Rapp, C.h., Manhart, M.: Flow over periodic hills. Numerical and experimental study in a wide range of Reynolds numbers. Comput. Fluids 38, 433–457 (2009)MATHCrossRef
144.
Zurück zum Zitat Saric, S., Jakirlic, S., Breuer, M., Jaffrezic, B., Deng, G., Chikhaoui, O, Fröhlich, J., Von Terzi, D., Manhart, M., Peller, N.: Evaluation of detached-eddy-simulations for predicting the flow over periodic hills. In: Cancès, E., Gerbeau, J.F. (eds.) ESAIM Proceedings of CEMRACS 2005 Comput. Aeroacous. Comput. Fluid Dynam. Turbul. Flows, vol. 16, pp. 133–145 (2007) Saric, S., Jakirlic, S., Breuer, M., Jaffrezic, B., Deng, G., Chikhaoui, O, Fröhlich, J., Von Terzi, D., Manhart, M., Peller, N.: Evaluation of detached-eddy-simulations for predicting the flow over periodic hills. In: Cancès, E., Gerbeau, J.F. (eds.) ESAIM Proceedings of CEMRACS 2005 Comput. Aeroacous. Comput. Fluid Dynam. Turbul. Flows, vol. 16, pp. 133–145 (2007)
145.
Zurück zum Zitat Saric, S., Kniesner, B., Mehdizadeh, A., Jakirlic, S., Hanjalic, K., Tropea, C.: Comparative assessment of hybrid LES/RANS models in turbulent flows separating from smooth surfaces. In: Adv. in Hybrid RANS-LES Modelling, NNFM 97, pp. 142–151. Springer, Berlin (2008) Saric, S., Kniesner, B., Mehdizadeh, A., Jakirlic, S., Hanjalic, K., Tropea, C.: Comparative assessment of hybrid LES/RANS models in turbulent flows separating from smooth surfaces. In: Adv. in Hybrid RANS-LES Modelling, NNFM 97, pp. 142–151. Springer, Berlin (2008)
146.
Zurück zum Zitat Ma, J.M., Peng, S.H., Davidson, L., Wang, F.J.: A low Reynodls number variant of partially-averaged Navier-Stokes model for turbulence. Int. J. Heat Fluid Flow 32, 652–669 (2011)CrossRef Ma, J.M., Peng, S.H., Davidson, L., Wang, F.J.: A low Reynodls number variant of partially-averaged Navier-Stokes model for turbulence. Int. J. Heat Fluid Flow 32, 652–669 (2011)CrossRef
147.
Zurück zum Zitat Manhart, M., Rapp, C., Peller, N., Breuer, M., Aybay, O., Denev, J., Falconi, J.: Assessment of eddy resolving techniques for the flow over periodically arranged hills up to Re=37,000. In: Quality and Reliability of Large Eddy Simulations II, vol. 16. Springer Verlag, pp. 361–370 (2011) Manhart, M., Rapp, C., Peller, N., Breuer, M., Aybay, O., Denev, J., Falconi, J.: Assessment of eddy resolving techniques for the flow over periodically arranged hills up to Re=37,000. In: Quality and Reliability of Large Eddy Simulations II, vol. 16. Springer Verlag, pp. 361–370 (2011)
148.
Zurück zum Zitat Durbin, P.: Near-wall turbulence closure modelling without damping functions. Theor. Comput. Fluid Dyn. 3, 1–13 (1991)MATH Durbin, P.: Near-wall turbulence closure modelling without damping functions. Theor. Comput. Fluid Dyn. 3, 1–13 (1991)MATH
149.
Zurück zum Zitat Lashmipathy, S., Girimaji, S.S.: Partially averaged Navier-Stokes (PANS) method for turbulence simulations- Flow past a circular cylinder. J. Fluids Eng., ASME 132(1212202), 1–9 (2010) Lashmipathy, S., Girimaji, S.S.: Partially averaged Navier-Stokes (PANS) method for turbulence simulations- Flow past a circular cylinder. J. Fluids Eng., ASME 132(1212202), 1–9 (2010)
150.
Zurück zum Zitat Han, X., Krajnovic, S., Basara, B.: Study of active flow control for a simplified vehicle model using the PANS, method. Int. J. Heat Fluid Flow 42, 139–150 (2013)CrossRef Han, X., Krajnovic, S., Basara, B.: Study of active flow control for a simplified vehicle model using the PANS, method. Int. J. Heat Fluid Flow 42, 139–150 (2013)CrossRef
151.
Zurück zum Zitat Mirzaei, M., Krajnovic, S., Basara, B.: Partially-averaged Navier-Stokes simulations of flows around two different Ahmed bodies. Comput. Fluids 117, 273–286 (2015)MathSciNetCrossRef Mirzaei, M., Krajnovic, S., Basara, B.: Partially-averaged Navier-Stokes simulations of flows around two different Ahmed bodies. Comput. Fluids 117, 273–286 (2015)MathSciNetCrossRef
152.
Zurück zum Zitat Krajnović, S., Minelli, G., Basara, B.: Partially-averaged Navier-Stokes simulations of two bluff body flows. Appl. Math. Comput. 272, 692–706 (2016)MathSciNet Krajnović, S., Minelli, G., Basara, B.: Partially-averaged Navier-Stokes simulations of two bluff body flows. Appl. Math. Comput. 272, 692–706 (2016)MathSciNet
153.
Zurück zum Zitat Menter, F.R.: Elements and Applications of Scale Resolving Simulation Methods in Industrial CFD, Direct and Large Eddy Simulation IX, ERCOFTAC Series 20, pp. 179–196. Springer International Publishing, Switzerland (2015) Menter, F.R.: Elements and Applications of Scale Resolving Simulation Methods in Industrial CFD, Direct and Large Eddy Simulation IX, ERCOFTAC Series 20, pp. 179–196. Springer International Publishing, Switzerland (2015)
Metadaten
Titel
The State of the Art of Hybrid RANS/LES Modeling for the Simulation of Turbulent Flows
verfasst von
Bruno Chaouat
Publikationsdatum
01.07.2017
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 2/2017
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-017-9828-8

Weitere Artikel der Ausgabe 2/2017

Flow, Turbulence and Combustion 2/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.