Skip to main content
Erschienen in: Autonomous Robots 3/2014

01.10.2014

Energy-optimal trajectory planning for car-like robots

verfasst von: Pratap Tokekar, Nikhil Karnad, Volkan Isler

Erschienen in: Autonomous Robots | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

When a battery-powered robot needs to operate for a long period of time, optimizing its energy consumption becomes critical. Driving motors are a major source of power consumption for mobile robots. In this paper, we study the problem of finding optimal paths and velocity profiles for car-like robots so as to minimize the energy consumed during motion. We start with an established model for energy consumption of DC motors. We first study the problem of finding the energy optimal velocity profiles, given a path for the robot. We present closed form solutions for the unconstrained case and for the case where there is a bound on maximum velocity. We then study a general problem of finding an energy optimal path along with a velocity profile, given a starting and goal position and orientation for the robot. Along the path, the instantaneous velocity of the robot may be bounded as a function of its turning radius, which in turn affects the energy consumption. Unlike minimum length paths, minimum energy paths may contain circular segments of varying radii. We show how to efficiently construct a graph which generalizes Dubins’ paths by including segments with arbitrary radii. Our algorithm uses the closed-form solution for the optimal velocity profiles as a subroutine to find the minimum energy trajectories, up to a fine discretization. We investigate the structure of energy-optimal paths and highlight instances where these paths deviate from the minimum length Dubins’ curves. In addition, we present a calibration method to find energy model parameters. Finally, we present results from experiments conducted on a custom-built robot for following optimal velocity profiles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
In this section, \(x\) refers to the \(X\)-coordinate of the robot, and not the parametric position of the robot along a path as used in the preceding sections.
 
Literatur
1.
Zurück zum Zitat Balkcom, D., & Mason, M. (2002). Time optimal trajectories for bounded velocity differential drive vehicles. The International Journal of Robotics Research, 21(3), 199.CrossRef Balkcom, D., & Mason, M. (2002). Time optimal trajectories for bounded velocity differential drive vehicles. The International Journal of Robotics Research, 21(3), 199.CrossRef
2.
Zurück zum Zitat Broderick, J. A., Tilbury, D. M., & Atkins, E. M. (2014). Optimal coverage trajectories for a ugv with tradeoffs for energy and time. Autonomous Robots, 36(3), 257–271.CrossRef Broderick, J. A., Tilbury, D. M., & Atkins, E. M. (2014). Optimal coverage trajectories for a ugv with tradeoffs for energy and time. Autonomous Robots, 36(3), 257–271.CrossRef
3.
Zurück zum Zitat Chitsaz, H., LaValle, S., Balkcom, D., & Mason, M. (2009). Minimum wheel-rotation paths for differential-drive mobile robots. The International Journal of Robotics Research, 28(1), 66.CrossRef Chitsaz, H., LaValle, S., Balkcom, D., & Mason, M. (2009). Minimum wheel-rotation paths for differential-drive mobile robots. The International Journal of Robotics Research, 28(1), 66.CrossRef
4.
Zurück zum Zitat Ding, L., Deng, Z., Gao, H., Nagatani, K., & Yoshida, K. (2011). Planetary rovers’ wheel–soil interaction mechanics: new challenges and applications for wheeled mobile robots. Intelligent Service Robotics, 4(1), 17–38. Ding, L., Deng, Z., Gao, H., Nagatani, K., & Yoshida, K. (2011). Planetary rovers’ wheel–soil interaction mechanics: new challenges and applications for wheeled mobile robots. Intelligent Service Robotics, 4(1), 17–38.
6.
Zurück zum Zitat Dubins, L. (1957). On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. American Journal of Mathematics, 79(3), 497–516. Dubins, L. (1957). On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. American Journal of Mathematics, 79(3), 497–516.
7.
Zurück zum Zitat Fraichard, T., & Scheuer, A. (2004). From reeds and shepp’s to continuous-curvature paths. IEEE Transactions on Robotics, 20(6), 1025–1035. Fraichard, T., & Scheuer, A. (2004). From reeds and shepp’s to continuous-curvature paths. IEEE Transactions on Robotics, 20(6), 1025–1035.
9.
Zurück zum Zitat Gregory, J., Olivares, A., & Staffetti, E. (2012). Energy-optimal trajectory planning for robot manipulators with holonomic constraints. Systems and Control Letters, 61(2), 279–291.CrossRefMATHMathSciNet Gregory, J., Olivares, A., & Staffetti, E. (2012). Energy-optimal trajectory planning for robot manipulators with holonomic constraints. Systems and Control Letters, 61(2), 279–291.CrossRefMATHMathSciNet
10.
Zurück zum Zitat Guzzella, L., & Sciarretta, A. (2013). Vehicle propulsion systems: Introduction to modeling and optimization, 3rd edn. Berlin: Springer. Guzzella, L., & Sciarretta, A. (2013). Vehicle propulsion systems: Introduction to modeling and optimization, 3rd edn. Berlin: Springer.
11.
12.
Zurück zum Zitat Karaman, S., & Frazzoli, E. (2010). Optimal kinodynamic motion planning using incremental sampling-based methods. In: 49th IEEE Conference on Decision and Control (CDC), 2010 (pp. 7681–7687). Karaman, S., & Frazzoli, E. (2010). Optimal kinodynamic motion planning using incremental sampling-based methods. In: 49th IEEE Conference on Decision and Control (CDC), 2010 (pp. 7681–7687).
13.
Zurück zum Zitat Kim, C., & Kim, B. (2007). Minimum-Energy Rotational Trajectory Planning for Differential-Driven Wheeled Mobile Robots. In: Proceedings of 13th International Conference on Advanced Robotics (pp. 265–270). Kim, C., & Kim, B. (2007). Minimum-Energy Rotational Trajectory Planning for Differential-Driven Wheeled Mobile Robots. In: Proceedings of 13th International Conference on Advanced Robotics (pp. 265–270).
14.
Zurück zum Zitat Kim, C., & Kim, B. (2007). Minimum-energy translational trajectory generation for differential-driven wheeled mobile robots. Journal of Intelligent and Robotic Systems, 49(4), 367–383.CrossRef Kim, C., & Kim, B. (2007). Minimum-energy translational trajectory generation for differential-driven wheeled mobile robots. Journal of Intelligent and Robotic Systems, 49(4), 367–383.CrossRef
15.
Zurück zum Zitat Kirk, D. (1970). Optimal control theory: An introduction. New York: Prentice Hall. Kirk, D. (1970). Optimal control theory: An introduction. New York: Prentice Hall.
16.
Zurück zum Zitat Lamiraux, F., & Lammond, J. P. (2001). Smooth motion planning for car-like vehicles. IEEE Transactions on Robotics and Automation, 17(4), 498–501.CrossRef Lamiraux, F., & Lammond, J. P. (2001). Smooth motion planning for car-like vehicles. IEEE Transactions on Robotics and Automation, 17(4), 498–501.CrossRef
17.
Zurück zum Zitat LaValle, S. M., & Kuffner, J. J. (2001). Randomized kinodynamic planning. The International Journal of Robotics Research, 20(5), 378–400.CrossRef LaValle, S. M., & Kuffner, J. J. (2001). Randomized kinodynamic planning. The International Journal of Robotics Research, 20(5), 378–400.CrossRef
18.
Zurück zum Zitat Mei, Y., Lu, Y., Hu, Y., & Lee, C. (2004). Energy-efficient motion planning for mobile robots. In Proceedings of IEEE International Conference on Robotics and Automation. Mei, Y., Lu, Y., Hu, Y., & Lee, C. (2004). Energy-efficient motion planning for mobile robots. In Proceedings of IEEE International Conference on Robotics and Automation.
19.
Zurück zum Zitat Motors, D. C. (1977). Speed controls, servo systems: An engineering handbook. Hopkins: Electro-Craft Corporation. Motors, D. C. (1977). Speed controls, servo systems: An engineering handbook. Hopkins: Electro-Craft Corporation.
20.
Zurück zum Zitat Reeds, J., & Shepp, L. (1990). Optimal paths for a car that goes both forwards and backwards. Pacific Journal of Mathematics, 145(2), 367–393.CrossRefMathSciNet Reeds, J., & Shepp, L. (1990). Optimal paths for a car that goes both forwards and backwards. Pacific Journal of Mathematics, 145(2), 367–393.CrossRefMathSciNet
22.
Zurück zum Zitat Sun, Z., & Reif, J. (2005). On finding energy-minimizing paths on terrains. IEEE Transactions on Robotics, 21(1), 102–114.CrossRef Sun, Z., & Reif, J. (2005). On finding energy-minimizing paths on terrains. IEEE Transactions on Robotics, 21(1), 102–114.CrossRef
23.
Zurück zum Zitat Tokekar, P., Karnad, N., & Isler, V. (2011). Energy-optimal velocity profiles for car-like robots. In Proceedings of IEEE International Conference on Robotics and Automation. Tokekar, P., Karnad, N., & Isler, V. (2011). Energy-optimal velocity profiles for car-like robots. In Proceedings of IEEE International Conference on Robotics and Automation.
24.
Zurück zum Zitat Wang, G., Irwin, M., Berman, P., Fu, H., & La Porta, T. (2005). Optimizing sensor movement planning for energy efficiency. In Proceedings of the ACM International Symposium on Low power electronics and design. Wang, G., Irwin, M., Berman, P., Fu, H., & La Porta, T. (2005). Optimizing sensor movement planning for energy efficiency. In Proceedings of the ACM International Symposium on Low power electronics and design.
25.
Zurück zum Zitat Wigstrom, O., Lennartson, B., Vergnano, A., & Breitholtz, C. (2013). High-level scheduling of energy optimal trajectories. IEEE Transactions on Automation Science and Engineering, 10(1), 57–64. Wigstrom, O., Lennartson, B., Vergnano, A., & Breitholtz, C. (2013). High-level scheduling of energy optimal trajectories. IEEE Transactions on Automation Science and Engineering, 10(1), 57–64.
Metadaten
Titel
Energy-optimal trajectory planning for car-like robots
verfasst von
Pratap Tokekar
Nikhil Karnad
Volkan Isler
Publikationsdatum
01.10.2014
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 3/2014
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-014-9390-3

Weitere Artikel der Ausgabe 3/2014

Autonomous Robots 3/2014 Zur Ausgabe

Neuer Inhalt