Skip to main content
Erschienen in: Cellulose 1/2012

01.02.2012

Crosslinked fibrous composites based on cellulose nanofibers and collagen with in situ pH induced fibrillation

verfasst von: Aji P. Mathew, Kristiina Oksman, Dorothée Pierron, Marie-Franciose Harmad

Erschienen in: Cellulose | Ausgabe 1/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Collagen and cellulose nanofiber based composites were prepared by solution casting followed by pH induced in situ partial fibrillation of collagen phase and crosslinking of collagen phase using gluteraldehyde. Microscopy studies on the materials confirmed the presence of fibrous collagen and cellulose nanofibers embedded in the collagen matrix. The cellulose nanofiber addition as well as collagen crosslinking showed significant positive impact on the nanocomposite’s mechanical behaviour. The synergistic performance of the nanocomposites indicated stabilization and reinforcement through strong physical entanglement between collagen and cellulose fibres as well as chemical interaction between collagen matrix and collagen fibrils. The mechanical performance and stability in moist conditions showed the potential of these materials as implantable scaffolds in biomedical applications. The collagen-cellulose ratio, crosslinking agent and crosslinking level of collagen may be further optimised to tailor the mechanical properties and cytocompatibility of these composites for specific applications such as artificial ligament or tendon.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM (2010) Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Deg Stab 5:2126–2146CrossRef Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM (2010) Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Deg Stab 5:2126–2146CrossRef
Zurück zum Zitat Birk DE, Bruckner P (2005) Collagen suprastructure. In: Brinckman J, Notbohm H, Mueller PK (eds) Collagen: primer in structure, processing and assembly. Topics in current chemistry, vol 247. Springer, Berlin, pp 185–205 Birk DE, Bruckner P (2005) Collagen suprastructure. In: Brinckman J, Notbohm H, Mueller PK (eds) Collagen: primer in structure, processing and assembly. Topics in current chemistry, vol 247. Springer, Berlin, pp 185–205
Zurück zum Zitat Bodin A, Bäckdahl H, Gustafsson L, Risberg B, Gatenholm P (2006) Manufacturing and characterisation bacterial cellulose tubes using two different fermentation techniques. In: Mendez-Vilas A (ed) Modern multidisciplinary applied microbiology:exploiting microbes and their interactions. Weinheim, Wiley VC Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 619–622 Bodin A, Bäckdahl H, Gustafsson L, Risberg B, Gatenholm P (2006) Manufacturing and characterisation bacterial cellulose tubes using two different fermentation techniques. In: Mendez-Vilas A (ed) Modern multidisciplinary applied microbiology:exploiting microbes and their interactions. Weinheim, Wiley VC Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 619–622
Zurück zum Zitat Cheng Z, Teoh S-H (2004) Surface modification of ultra thin poly (epsilon-caprolactone) films using acrylic acid and collagen. Biomaterials 25(11):1991–2001CrossRef Cheng Z, Teoh S-H (2004) Surface modification of ultra thin poly (epsilon-caprolactone) films using acrylic acid and collagen. Biomaterials 25(11):1991–2001CrossRef
Zurück zum Zitat De Santis R, Sarracino F, Mollica F, Netti PA, Ambrosio L, Nicolais L (2004) Continuous fibre reinforced polymers as connective tissue replacement. Comp Sci Technol 64:861–871CrossRef De Santis R, Sarracino F, Mollica F, Netti PA, Ambrosio L, Nicolais L (2004) Continuous fibre reinforced polymers as connective tissue replacement. Comp Sci Technol 64:861–871CrossRef
Zurück zum Zitat Eyholzer C, Borge de Couraca A, Dic F, Bourban PE, Tingaout P, Zimmermann T, Månson JAE, Oksman K (2011) Biocomposite hydrogels with carboxymethylated, nanofibrillated cellulose powder for replacemeny of the nucleus pulposus. Biomacromolecules 12(5):1419–1427CrossRef Eyholzer C, Borge de Couraca A, Dic F, Bourban PE, Tingaout P, Zimmermann T, Månson JAE, Oksman K (2011) Biocomposite hydrogels with carboxymethylated, nanofibrillated cellulose powder for replacemeny of the nucleus pulposus. Biomacromolecules 12(5):1419–1427CrossRef
Zurück zum Zitat Hassan ML, Mathew AP, Hassan EA, Nahala E-W, Oksman K (2011) Nanofibers from bagasse and rice straw : process optimization and properties. Wood Sci Technol 42:362–376 Hassan ML, Mathew AP, Hassan EA, Nahala E-W, Oksman K (2011) Nanofibers from bagasse and rice straw : process optimization and properties. Wood Sci Technol 42:362–376
Zurück zum Zitat Hutmacher S (2000) Polymeric scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543CrossRef Hutmacher S (2000) Polymeric scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543CrossRef
Zurück zum Zitat ISO 10993-5 (2009) Biological evaluation of medical devices–part 5: Test for in vitro cytotoxicity ISO 10993-5 (2009) Biological evaluation of medical devices–part 5: Test for in vitro cytotoxicity
Zurück zum Zitat Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Comp Sci Technol 68:2103–2106CrossRef Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Comp Sci Technol 68:2103–2106CrossRef
Zurück zum Zitat Jagur-Grodzinski P (2006) Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym Adv Technol 17:395–418CrossRef Jagur-Grodzinski P (2006) Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym Adv Technol 17:395–418CrossRef
Zurück zum Zitat Kanamori T, Habu T, Shinbo T, Sakai K (2000) Difference in solute diffusivity in crosslinked collagen gels prepared under various conditions. Mat Sci Eng C13:85–89 Kanamori T, Habu T, Shinbo T, Sakai K (2000) Difference in solute diffusivity in crosslinked collagen gels prepared under various conditions. Mat Sci Eng C13:85–89
Zurück zum Zitat Kim J, Cai Z, Chen Yi (2010) Biocompatible bacterial cellulose composites for biomedical application. J Nanotechnol Eng Med 1: 0110061-01100617 Kim J, Cai Z, Chen Yi (2010) Biocompatible bacterial cellulose composites for biomedical application. J Nanotechnol Eng Med 1: 0110061-01100617
Zurück zum Zitat Klemm D, Schumauder H-P, Heinze T (2002) Cellulose. In: Vandamme E, De Baets S, Steinbüchel A (eds) Biopolymers, volume 6, polysaccharides II: polysaccharides from eukaryotes. Wiley VCH, Weinheim, p 275 Klemm D, Schumauder H-P, Heinze T (2002) Cellulose. In: Vandamme E, De Baets S, Steinbüchel A (eds) Biopolymers, volume 6, polysaccharides II: polysaccharides from eukaryotes. Wiley VCH, Weinheim, p 275
Zurück zum Zitat Koelger WS, Griffith LG (2004) Osteoblast response to PLGA tissue engineering scaffolds with PEO modified surface chemistries and demonstration of patterned cell response. Biomaterials 25:2819–2830CrossRef Koelger WS, Griffith LG (2004) Osteoblast response to PLGA tissue engineering scaffolds with PEO modified surface chemistries and demonstration of patterned cell response. Biomaterials 25:2819–2830CrossRef
Zurück zum Zitat Krässig HS, Steadman J, Schliefer RG, Albrecht K, Mohring W, Schlosser H (2004) Cellulose. In: Ullmann’s encyclopedia of industrial science. Wiley VCH, Weinheim Krässig HS, Steadman J, Schliefer RG, Albrecht K, Mohring W, Schlosser H (2004) Cellulose. In: Ullmann’s encyclopedia of industrial science. Wiley VCH, Weinheim
Zurück zum Zitat Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6:3160–3165CrossRef Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6:3160–3165CrossRef
Zurück zum Zitat Märtson M, Viljanto J, Hurme T, Saukko, P (1998) Biocomptibility of cellulose sponge with bone. Eur Surg Res 30:426–432 Märtson M, Viljanto J, Hurme T, Saukko, P (1998) Biocomptibility of cellulose sponge with bone. Eur Surg Res 30:426–432
Zurück zum Zitat Meyers MA, Chen P-Y, Lin AY-M, Seki Y (2008) Biological materials: structure and mechanical properties. Prog Mat Sci 53:1–206CrossRef Meyers MA, Chen P-Y, Lin AY-M, Seki Y (2008) Biological materials: structure and mechanical properties. Prog Mat Sci 53:1–206CrossRef
Zurück zum Zitat Miyamoto T, Takahashi S, Ito H, Inagaki H, Noishiki Y (1989) Tissue biocompatibility of cellulose and its derivatives. J Biomed Mater Res 23:125–133 Miyamoto T, Takahashi S, Ito H, Inagaki H, Noishiki Y (1989) Tissue biocompatibility of cellulose and its derivatives. J Biomed Mater Res 23:125–133
Zurück zum Zitat Murugan R, Ramakrishna S (2005) Development of nanocomposites for bone grafting. Comp Sci Technol 65:2385–2406CrossRef Murugan R, Ramakrishna S (2005) Development of nanocomposites for bone grafting. Comp Sci Technol 65:2385–2406CrossRef
Zurück zum Zitat Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A 78:547–552CrossRef Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A 78:547–552CrossRef
Zurück zum Zitat Oksman K, Mathew AP, Sain M (2009) Novel bionanocomposites: processing properties and potential applications. Plast Rubber Comp Macromol Eng 38(9/10):396–405CrossRef Oksman K, Mathew AP, Sain M (2009) Novel bionanocomposites: processing properties and potential applications. Plast Rubber Comp Macromol Eng 38(9/10):396–405CrossRef
Zurück zum Zitat Qiao R, Brinson LC (2009) Simulation of interphase percolation and gradients in polymer nanocomposites. Comp Sci Tecnol 69:491–499CrossRef Qiao R, Brinson LC (2009) Simulation of interphase percolation and gradients in polymer nanocomposites. Comp Sci Tecnol 69:491–499CrossRef
Zurück zum Zitat Seydibeyoğlu MÖ, Oksman K (2008) Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Comp Sci Technol 68:908–914CrossRef Seydibeyoğlu MÖ, Oksman K (2008) Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Comp Sci Technol 68:908–914CrossRef
Zurück zum Zitat Shin H, Jo S, Mikos AG (2003) Biomimetic materials for tissue engineering. Biomaterials 24:4353–4354CrossRef Shin H, Jo S, Mikos AG (2003) Biomimetic materials for tissue engineering. Biomaterials 24:4353–4354CrossRef
Zurück zum Zitat Strasser S, Zink A, Heckl WM, Thalhammer S (2006) Controlled self-assembly of collagen fibrils by an automated dialysis system. J Biomech Eng Trans ASME 128(5):792–796CrossRef Strasser S, Zink A, Heckl WM, Thalhammer S (2006) Controlled self-assembly of collagen fibrils by an automated dialysis system. J Biomech Eng Trans ASME 128(5):792–796CrossRef
Zurück zum Zitat Svensson A, Niclasson E, Harrah T, Panilaitis B, Kaplan D, Brittber M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431CrossRef Svensson A, Niclasson E, Harrah T, Panilaitis B, Kaplan D, Brittber M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431CrossRef
Zurück zum Zitat Vilamitjana-Amedee J, Bareille R, Rouais F, Caplan AL, Harmand MF (1993) Human bone marrow stromal cells express an osteoblastic phenotype in culture. In Vitro Cell Dev Biol Anim 29(A):699–707CrossRef Vilamitjana-Amedee J, Bareille R, Rouais F, Caplan AL, Harmand MF (1993) Human bone marrow stromal cells express an osteoblastic phenotype in culture. In Vitro Cell Dev Biol Anim 29(A):699–707CrossRef
Zurück zum Zitat Wen X, Tresco PA (2006) Fabrication and characterization of permeable degradable poly(l-Lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels. Biomaterials 27:3800–3809CrossRef Wen X, Tresco PA (2006) Fabrication and characterization of permeable degradable poly(l-Lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels. Biomaterials 27:3800–3809CrossRef
Zurück zum Zitat Zhijiang C, Guang Y (2011) Bacterial cellulose/collagen composite: characterization and first evaluation of cytocompatibility. J Appl Polym Sci 120:2938–2944CrossRef Zhijiang C, Guang Y (2011) Bacterial cellulose/collagen composite: characterization and first evaluation of cytocompatibility. J Appl Polym Sci 120:2938–2944CrossRef
Metadaten
Titel
Crosslinked fibrous composites based on cellulose nanofibers and collagen with in situ pH induced fibrillation
verfasst von
Aji P. Mathew
Kristiina Oksman
Dorothée Pierron
Marie-Franciose Harmad
Publikationsdatum
01.02.2012
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 1/2012
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-011-9624-x

Weitere Artikel der Ausgabe 1/2012

Cellulose 1/2012 Zur Ausgabe