Skip to main content
Erschienen in: Cellulose 5/2012

01.10.2012 | Original Paper

Formation and structure of the complexes of sub-elementary fibrils of bacterial cellulose with fluorescent brightener molecules

verfasst von: Shinji Suzuki, Asako Hirai, Fumitaka Horii

Erschienen in: Cellulose | Ausgabe 5/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The formation and structure of the complexes of sub-elementary fibrils (SEFs) of bacterial cellulose with fluorescent brightener (FB) molecules have been investigated using WAXD, SEM, and computer calculations of WAXD profiles. It is confirmed for the first time that the SEF-FB complexes are formed in 10 min by washing the cultivation product, which is prepared by the culture of Acetobacter xylinum in the presence of FB, with the pH 7 citrate–phosphate buffer solution and their thin sheet-like structure is grown almost two-dimensionally in 24 h in the medium. The same SEF-FB complexes are also produced by washing the product with NaCl aqueous solutions having concentrations higher than 0.1 wt%, while the original SEF structure is unchanged at lower concentrations. This indicates that the concentration of salt ions in washing media is a main factor to dominate the formation of the SEF-FB complexes from the cultivation product. The calculations of WAXD profiles reveal that the chain-slid, parallel-set, and sheet-slid/contracted models well reproduce the WAXD profile observed for the SEF-FB complexes. In these models, the following modifications are conducted in the a,b-modified unit cell of cellulose I β ; the slide of the center chain along the b″ axis, the rotation of each chain around its own molecular axis, and the slide and contraction of the individual sheets composed of the center or origin chains. A single FB molecule is successfully packed into an energetically-allowable space in between the (010) planes in the 2a″ × b″ × 4c″ cell for the chain-slid model or in between the corresponding planes for the parallel-set and sheet-slid/contracted models. However, the detailed structure of FB in the complex is not yet determined due to the low crystallinity of the complexes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Brown RM (1996) The biosynthesis of cellulose. J Macromol Sic Pure Appl Chem A33:1345–1373. Related references are therein Brown RM (1996) The biosynthesis of cellulose. J Macromol Sic Pure Appl Chem A33:1345–1373. Related references are therein
Zurück zum Zitat Cousin SK, Brown RMJ (1997a) X-ray diffraction and ultrastructural analyses of dye-altered celluloses support van der Waals forces as the initial step in cellulose crystallization. Polymer 38:897–902CrossRef Cousin SK, Brown RMJ (1997a) X-ray diffraction and ultrastructural analyses of dye-altered celluloses support van der Waals forces as the initial step in cellulose crystallization. Polymer 38:897–902CrossRef
Zurück zum Zitat Cousin SK, Brown RMJ (1997b) Photoisomerization of a dye-altered β-1,4 glucan sheet induces the crystallization of a cellulose-composite. Polymer 38:903–912CrossRef Cousin SK, Brown RMJ (1997b) Photoisomerization of a dye-altered β-1,4 glucan sheet induces the crystallization of a cellulose-composite. Polymer 38:903–912CrossRef
Zurück zum Zitat Haigler HC, Benziman M (1982) Biogenesis of cellulose I microfibrils occurs by cell-directed self-assembly in Acetobacter xylinum. In: Brown RM (ed) Cellulose and other natural polymer systems. Biogenesis, structure, and degradation. Plenum Press, New York and London, pp 273–297. Related references are therein Haigler HC, Benziman M (1982) Biogenesis of cellulose I microfibrils occurs by cell-directed self-assembly in Acetobacter xylinum. In: Brown RM (ed) Cellulose and other natural polymer systems. Biogenesis, structure, and degradation. Plenum Press, New York and London, pp 273–297. Related references are therein
Zurück zum Zitat Haigler CH, Chanzy H (1988) Electron diffraction analysis of the altered cellulose synthesized by Acetobacter xylinum in the presence of fluorescent brightening agents and direct dyes. J Ultrastruct Mol Struct 98:299CrossRef Haigler CH, Chanzy H (1988) Electron diffraction analysis of the altered cellulose synthesized by Acetobacter xylinum in the presence of fluorescent brightening agents and direct dyes. J Ultrastruct Mol Struct 98:299CrossRef
Zurück zum Zitat Haigler CH, Brown RMJ, Benziman M (1980) Calcofluor white ST alters the in vivo assembly of cellulose microfibrils. Science 210:903–905CrossRef Haigler CH, Brown RMJ, Benziman M (1980) Calcofluor white ST alters the in vivo assembly of cellulose microfibrils. Science 210:903–905CrossRef
Zurück zum Zitat Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. Biochem J 58:345–352 Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. Biochem J 58:345–352
Zurück zum Zitat Kai A (1984a) The structure of the nascent fibril produced by Acetobacter xylinum: The x-ray diffraction diagram of cellulose produced in the presence of a fluorescent brightener. Makromol Chem Rapid Commun 5:307–310CrossRef Kai A (1984a) The structure of the nascent fibril produced by Acetobacter xylinum: The x-ray diffraction diagram of cellulose produced in the presence of a fluorescent brightener. Makromol Chem Rapid Commun 5:307–310CrossRef
Zurück zum Zitat Kai A (1984b) The structure of the nascent fibril produced by Acetobacter xylinium: the lattice spacing of cellulose produced in the presence of a fluorescent brightener. Makromol Chem Rapid Commun 5:653–655CrossRef Kai A (1984b) The structure of the nascent fibril produced by Acetobacter xylinium: the lattice spacing of cellulose produced in the presence of a fluorescent brightener. Makromol Chem Rapid Commun 5:653–655CrossRef
Zurück zum Zitat Kai A, Xu P (1990) Structure of bacterial cellulose-brightener complex from aspect of behavior of its mercerization. Polym J 22:955–961CrossRef Kai A, Xu P (1990) Structure of bacterial cellulose-brightener complex from aspect of behavior of its mercerization. Polym J 22:955–961CrossRef
Zurück zum Zitat Kai A, Xu P (1991) Orientation of crystallites in the bacterial cellulose-fluorescent brightener complex membrane. Kobunshi Ronbunshu 48:449–452CrossRef Kai A, Xu P (1991) Orientation of crystallites in the bacterial cellulose-fluorescent brightener complex membrane. Kobunshi Ronbunshu 48:449–452CrossRef
Zurück zum Zitat Kai A, Xu P, Horii F, Hu S (1994) CP/MAS 13C NMR study on microbial cellulose-fluorescent brightener complexes. Polymer 35:75–79CrossRef Kai A, Xu P, Horii F, Hu S (1994) CP/MAS 13C NMR study on microbial cellulose-fluorescent brightener complexes. Polymer 35:75–79CrossRef
Zurück zum Zitat Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose I β from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRef Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose I β from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRef
Zurück zum Zitat Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose I α from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306CrossRef Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose I α from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306CrossRef
Zurück zum Zitat Suzuki S, Hirai A, Horii, F (2010) Structural changes of sub-elementary fibrils of bacterial cellulose in the isolation process. Prepr 17th Ann Meet Cellulose Soc Japan, pp 25–26 Suzuki S, Hirai A, Horii, F (2010) Structural changes of sub-elementary fibrils of bacterial cellulose in the isolation process. Prepr 17th Ann Meet Cellulose Soc Japan, pp 25–26
Zurück zum Zitat Suzuki S, Suzuki F, Kanie Y, Tsujitani K, Hirai A, Kaji H, Horii F (2012) Structure and crystallization of sub-elementary fibrils of bacterial cellulose isolated by using a fluorescent brightening agent. Cellulose 19:713–727 Suzuki S, Suzuki F, Kanie Y, Tsujitani K, Hirai A, Kaji H, Horii F (2012) Structure and crystallization of sub-elementary fibrils of bacterial cellulose isolated by using a fluorescent brightening agent. Cellulose 19:713–727
Metadaten
Titel
Formation and structure of the complexes of sub-elementary fibrils of bacterial cellulose with fluorescent brightener molecules
verfasst von
Shinji Suzuki
Asako Hirai
Fumitaka Horii
Publikationsdatum
01.10.2012
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 5/2012
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-012-9756-7

Weitere Artikel der Ausgabe 5/2012

Cellulose 5/2012 Zur Ausgabe