Skip to main content
Erschienen in: Cellulose 5/2014

01.10.2014 | Original Paper

Bacterial cellulose-reinforced hydroxyapatite functionalized graphene oxide: a potential osteoinductive composite

verfasst von: Deepachitra Ramani, Thotapalli P. Sastry

Erschienen in: Cellulose | Ausgabe 5/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bacterial cellulose (BC) is a nanofibrous biocompatible scaffold used in bone tissue engineering. Graphene oxide/hydroxyapatite (GOHA) composite supports the adhesion of osteoblast cells with good viability. In the present study, GOHA was prepared by the wet chemical precipitation method, and BC obtained from Acetobacter aceti was added to the aqueous suspension of GOHA to prepare GOHABC. The scanning electron microscopic image of GOHABC showed uniform adsorption of GOHA on the surface of BC. The osteoinductive potential of the GOHABC scaffold was analyzed by alkaline phosphatase (ALP) activity assay using MG-63 cells, and its biocompatibility nature was studied by using both MG-63 and NIH-3T3 cells. The ALP activity and biocompatibility studies showed that GOHABC is a potential osteoinductive material in vitro and may be tried in the future for in vivo studies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Andrade FK, Costa R, Domingues L, Soares R, Gama M (2010) Improving bacterial cellulose for blood vessel replacement: functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide. Acta Biomater 6:4034–4041CrossRef Andrade FK, Costa R, Domingues L, Soares R, Gama M (2010) Improving bacterial cellulose for blood vessel replacement: functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide. Acta Biomater 6:4034–4041CrossRef
Zurück zum Zitat Azami M, Moosavifar MJ, Baheiraei N, Moztarzadeh F, Ai J (2012) Preparation of a biomimetic nanocomposite scaffold for bone tissue engineering via mineralization of gelatine hydrogel and study of mineral transformation in simulated body fluid. J Biomed Mater Res A 100:1347–1355CrossRef Azami M, Moosavifar MJ, Baheiraei N, Moztarzadeh F, Ai J (2012) Preparation of a biomimetic nanocomposite scaffold for bone tissue engineering via mineralization of gelatine hydrogel and study of mineral transformation in simulated body fluid. J Biomed Mater Res A 100:1347–1355CrossRef
Zurück zum Zitat Backdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141–2149CrossRef Backdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141–2149CrossRef
Zurück zum Zitat Beskardes IG, Demirtas TT, Durukan MD, Gumusderelioglu M (2012) Microwave-assisted fabrication of chitosan-hydroxyapatite superporous hydrogel composites as bone scaffolds. J Tissue Eng Regen Med. doi:10.1002/term.1677 Beskardes IG, Demirtas TT, Durukan MD, Gumusderelioglu M (2012) Microwave-assisted fabrication of chitosan-hydroxyapatite superporous hydrogel composites as bone scaffolds. J Tissue Eng Regen Med. doi:10.​1002/​term.​1677
Zurück zum Zitat Cai Z, Kim J (2010) Bacterial cellulose/poly(ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose 17:83–91CrossRef Cai Z, Kim J (2010) Bacterial cellulose/poly(ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose 17:83–91CrossRef
Zurück zum Zitat Charpentier PA, Maguire A, Wan WK (2006) Surface modification of polyester to produce a bacterial cellulose-based vascular prosthetic device. Appl Surf Sci 252:6360–6367CrossRef Charpentier PA, Maguire A, Wan WK (2006) Surface modification of polyester to produce a bacterial cellulose-based vascular prosthetic device. Appl Surf Sci 252:6360–6367CrossRef
Zurück zum Zitat Chen Y, Xi T, Zheng Y, Zhou L, Wan Y (2011) In vitro structural changes of nano-bacterial cellulose immersed in phosphate buffer solution. J Biomim Biomater Tissue Eng 10:55–66CrossRef Chen Y, Xi T, Zheng Y, Zhou L, Wan Y (2011) In vitro structural changes of nano-bacterial cellulose immersed in phosphate buffer solution. J Biomim Biomater Tissue Eng 10:55–66CrossRef
Zurück zum Zitat Chiaoprakobkij N, Sanchavanakit N, Subbalekha K, Pavasant P, Phisalaphong M (2011) Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts. Carbohydr Polym 85:548–553CrossRef Chiaoprakobkij N, Sanchavanakit N, Subbalekha K, Pavasant P, Phisalaphong M (2011) Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts. Carbohydr Polym 85:548–553CrossRef
Zurück zum Zitat Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294:1708–1712CrossRef Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294:1708–1712CrossRef
Zurück zum Zitat Feng Y, Zhang X, Shen Y, Yoshino K, Feng W (2012) A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydr Polym 87:644–649CrossRef Feng Y, Zhang X, Shen Y, Yoshino K, Feng W (2012) A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydr Polym 87:644–649CrossRef
Zurück zum Zitat Fontana JD, de Souza AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ, de Souza SJ, Narcisco GP, Bichara JA, Farah LF (1990) Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol 24–25:253–264CrossRef Fontana JD, de Souza AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ, de Souza SJ, Narcisco GP, Bichara JA, Farah LF (1990) Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol 24–25:253–264CrossRef
Zurück zum Zitat French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef
Zurück zum Zitat Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef
Zurück zum Zitat Grande CJ, Torres FG, Gomez CM, Bano MC (2009) Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater 5:1605–1615CrossRef Grande CJ, Torres FG, Gomez CM, Bano MC (2009) Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater 5:1605–1615CrossRef
Zurück zum Zitat Hammonds RL, Harrison MS, Cravanas TC, Gazzola WH, Stephens CP, Benson RS (2012) Biomimetic hydroxyapatite powder from a bacterial cellulose scaffold. Cellulose 19:1923–1932 Hammonds RL, Harrison MS, Cravanas TC, Gazzola WH, Stephens CP, Benson RS (2012) Biomimetic hydroxyapatite powder from a bacterial cellulose scaffold. Cellulose 19:1923–1932
Zurück zum Zitat He M, Chang C, Peng N, Zhang L (2012) Structure and properties of hydroxyapatite/cellulose nanocomposite films. Carbohydr Polym 87:2512–2518CrossRef He M, Chang C, Peng N, Zhang L (2012) Structure and properties of hydroxyapatite/cellulose nanocomposite films. Carbohydr Polym 87:2512–2518CrossRef
Zurück zum Zitat Hong L, Wang YL, Jia SR, Huang Y, Gao C, Wan YZ (2006) Hydroxyapatite/bacterial cellulose composites synthesized via a biomimetic route. Mater Lett 60:1710–1713CrossRef Hong L, Wang YL, Jia SR, Huang Y, Gao C, Wan YZ (2006) Hydroxyapatite/bacterial cellulose composites synthesized via a biomimetic route. Mater Lett 60:1710–1713CrossRef
Zurück zum Zitat Hu J, Feng K, Liu X, Ma PX (2009) Chondrogenic and osteogenic differentiations of human bone marrow-derived mesenchymal stem cells on a nanofibrous scaffold with designed pore network. Biomaterials 30:5061–5067CrossRef Hu J, Feng K, Liu X, Ma PX (2009) Chondrogenic and osteogenic differentiations of human bone marrow-derived mesenchymal stem cells on a nanofibrous scaffold with designed pore network. Biomaterials 30:5061–5067CrossRef
Zurück zum Zitat Huang X, Yang D, Yan W, Shi Z, Feng J, Gao Y, Weng W, Yan S (2007) Osteochondral repair using the combination of fibroblast growth factor and amorphous calcium phosphate/poly(L-lactic acid) hybrid materials. Biomaterials 28:3091–3100CrossRef Huang X, Yang D, Yan W, Shi Z, Feng J, Gao Y, Weng W, Yan S (2007) Osteochondral repair using the combination of fibroblast growth factor and amorphous calcium phosphate/poly(L-lactic acid) hybrid materials. Biomaterials 28:3091–3100CrossRef
Zurück zum Zitat Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef
Zurück zum Zitat Kim HW, Song JH, Kim HE (2005) Nanofiber generation of gelatin-hydroxyapatite biomimetics for guided tissue regeneration. Adv Funct Mater 15:1988–1994CrossRef Kim HW, Song JH, Kim HE (2005) Nanofiber generation of gelatin-hydroxyapatite biomimetics for guided tissue regeneration. Adv Funct Mater 15:1988–1994CrossRef
Zurück zum Zitat Kim TK, Park SH, Chung HJ, Yang DY, Park TG (2010) Microstructured scaffold coated with hydroxyapatite/collagen nanocomposite multilayer for enhanced osteogenic induction of human mesenchymal stem cells. J Mater Chem 20:8927–8933CrossRef Kim TK, Park SH, Chung HJ, Yang DY, Park TG (2010) Microstructured scaffold coated with hydroxyapatite/collagen nanocomposite multilayer for enhanced osteogenic induction of human mesenchymal stem cells. J Mater Chem 20:8927–8933CrossRef
Zurück zum Zitat Kim S, Ku SH, Lim SY, Kim JH, Park CB (2011) Graphene-biomineral hybrid materials. Adv Mater 23:2009–2014CrossRef Kim S, Ku SH, Lim SY, Kim JH, Park CB (2011) Graphene-biomineral hybrid materials. Adv Mater 23:2009–2014CrossRef
Zurück zum Zitat Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11:771–778CrossRef Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11:771–778CrossRef
Zurück zum Zitat Li M, Wang Y, Liu Q, Li Q, Cheng Y, Zheng Y, Xi T, Wei S (2013) In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide. J Mater Chem B 1:475–484CrossRef Li M, Wang Y, Liu Q, Li Q, Cheng Y, Zheng Y, Xi T, Wei S (2013) In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide. J Mater Chem B 1:475–484CrossRef
Zurück zum Zitat Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611CrossRef Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611CrossRef
Zurück zum Zitat Liou SC, Chen SY, Lee HY, Bow JS (2004) Structural characterization of nano-sized calcium deficient apatite powders. Biomaterials 25:189–196CrossRef Liou SC, Chen SY, Lee HY, Bow JS (2004) Structural characterization of nano-sized calcium deficient apatite powders. Biomaterials 25:189–196CrossRef
Zurück zum Zitat Liu H, Xi P, Xie G, Shi Y, Hou F, Huang L, Chen F, Zeng Z, Shao C, Wang J (2012a) Simultaneous reduction and surface functionalization of graphene oxide for hydroxyapatite mineralization. J Phys Chem C 116:3334–3341CrossRef Liu H, Xi P, Xie G, Shi Y, Hou F, Huang L, Chen F, Zeng Z, Shao C, Wang J (2012a) Simultaneous reduction and surface functionalization of graphene oxide for hydroxyapatite mineralization. J Phys Chem C 116:3334–3341CrossRef
Zurück zum Zitat Liu L, Wang Y, Guo S, Wang Z, Wang W (2012b) Porous polycaprolactone/nanohydroxyapatite tissue engineering scaffolds fabricated by combining NaCl and PEG as co-porogens: structure, property, and chondrocyte–scaffold interaction in vitro. J Biomed Mater Res B Appl Biomater 100:956–966CrossRef Liu L, Wang Y, Guo S, Wang Z, Wang W (2012b) Porous polycaprolactone/nanohydroxyapatite tissue engineering scaffolds fabricated by combining NaCl and PEG as co-porogens: structure, property, and chondrocyte–scaffold interaction in vitro. J Biomed Mater Res B Appl Biomater 100:956–966CrossRef
Zurück zum Zitat McManus AJ, Doremus RH, Siegel RW, Bizios R (2005) Evaluation of cytocompatibility and bending modulus of nanoceramic/polymer composite. J Biomed Mater Res A 72:98–106CrossRef McManus AJ, Doremus RH, Siegel RW, Bizios R (2005) Evaluation of cytocompatibility and bending modulus of nanoceramic/polymer composite. J Biomed Mater Res A 72:98–106CrossRef
Zurück zum Zitat Millon LE, Mohammadi H, Wan WK (2006) Anisotropic polyvinyl alcohol hydrogel for cardiovascular applications. J Biomed Mater Res B Appl Biomater 79:305–311CrossRef Millon LE, Mohammadi H, Wan WK (2006) Anisotropic polyvinyl alcohol hydrogel for cardiovascular applications. J Biomed Mater Res B Appl Biomater 79:305–311CrossRef
Zurück zum Zitat Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14:1124–1128CrossRef Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14:1124–1128CrossRef
Zurück zum Zitat Nayak TR, Andersen H, Makam VS, Khaw C, Bae S, Xu X, Ee PLR, Ahn JH, Hong BH, Pastorin G, Ozyilmaz B (2011) Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5:4670–4678CrossRef Nayak TR, Andersen H, Makam VS, Khaw C, Bae S, Xu X, Ee PLR, Ahn JH, Hong BH, Pastorin G, Ozyilmaz B (2011) Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5:4670–4678CrossRef
Zurück zum Zitat Osathanon T, Giachelli CM, Somerman MJ (2009) Immobilization of alkaline phosphatase on microporous nanofibrous fibrin scaffolds for bone tissue engineering. Biomaterials 30:4513–4521CrossRef Osathanon T, Giachelli CM, Somerman MJ (2009) Immobilization of alkaline phosphatase on microporous nanofibrous fibrin scaffolds for bone tissue engineering. Biomaterials 30:4513–4521CrossRef
Zurück zum Zitat Pacheco-Pantoja EL, Ranganath LR, Gallagher JA, Wilson PJM, Fraser WD (2011) Receptors and effects of gut hormones in three osteoblastic cell lines. BMC Physiol 11:1–14CrossRef Pacheco-Pantoja EL, Ranganath LR, Gallagher JA, Wilson PJM, Fraser WD (2011) Receptors and effects of gut hormones in three osteoblastic cell lines. BMC Physiol 11:1–14CrossRef
Zurück zum Zitat Salavagione HJ, Gomez MA, Martinez G (2009) Polymeric modification of graphene through esterification of graphite oxide and poly(vinyl alcohol). Macromolecules 42:6331–6334CrossRef Salavagione HJ, Gomez MA, Martinez G (2009) Polymeric modification of graphene through esterification of graphite oxide and poly(vinyl alcohol). Macromolecules 42:6331–6334CrossRef
Zurück zum Zitat Sasidharan A, Panchakarla LS, Chandran P, Menon D, Nair S, Rao CNR, Koyakutty M (2011) Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale 3:2461–2464CrossRef Sasidharan A, Panchakarla LS, Chandran P, Menon D, Nair S, Rao CNR, Koyakutty M (2011) Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale 3:2461–2464CrossRef
Zurück zum Zitat Shi Q, Li Y, Sun J, Zhang H, Chen L, Chen B, Yang H, Wang Z (2010) The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic protein-2. Biomaterials 33:6644–6649CrossRef Shi Q, Li Y, Sun J, Zhang H, Chen L, Chen B, Yang H, Wang Z (2010) The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic protein-2. Biomaterials 33:6644–6649CrossRef
Zurück zum Zitat Shinto H, Hirata T, Fukasawa T, Fuji S, Maeda H, Okada M, Nakamura Y, Furuzono T (2013) Effect of interfacial serum proteins on melanoma cell adhesion to biodegradable poly(l-lactic acid) microspheres coated with hydroxyapatite. Colloids Surf B 108:8–15CrossRef Shinto H, Hirata T, Fukasawa T, Fuji S, Maeda H, Okada M, Nakamura Y, Furuzono T (2013) Effect of interfacial serum proteins on melanoma cell adhesion to biodegradable poly(l-lactic acid) microspheres coated with hydroxyapatite. Colloids Surf B 108:8–15CrossRef
Zurück zum Zitat Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431CrossRef Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431CrossRef
Zurück zum Zitat Tazi N, Zhang Z, Messaddeq Y, Almeida-Lopes L, Zanardi LM, Levinson D, Rouabhia M (2012) Hydroxyapatite bioactivated bacterial cellulose promotes osteoblast growth and the formation of bone nodules. AMB Express 2:1–10CrossRef Tazi N, Zhang Z, Messaddeq Y, Almeida-Lopes L, Zanardi LM, Levinson D, Rouabhia M (2012) Hydroxyapatite bioactivated bacterial cellulose promotes osteoblast growth and the formation of bone nodules. AMB Express 2:1–10CrossRef
Zurück zum Zitat Wahl DA, Sachlos E, Liu C, Czernuszka JT (2007) Controlling the processing of collagen-hydroxyapatite scaffolds for bone tissue engineering. J Mater Sci Mater Med 18:201–209CrossRef Wahl DA, Sachlos E, Liu C, Czernuszka JT (2007) Controlling the processing of collagen-hydroxyapatite scaffolds for bone tissue engineering. J Mater Sci Mater Med 18:201–209CrossRef
Zurück zum Zitat Wan C, Frydrych M, Chen B (2011) Strong and bioactive gelatin–graphene oxide nanocomposites. Soft Matter 7:6159–6166CrossRef Wan C, Frydrych M, Chen B (2011) Strong and bioactive gelatin–graphene oxide nanocomposites. Soft Matter 7:6159–6166CrossRef
Zurück zum Zitat Wang H, Guan S, Wang Y, Liu H, Wang H, Wang L, Ren C, Zhu S, Chen K (2011) In vivo degradation behavior of Ca-deficient hydroxyapatite coated Mg–Zn–Ca alloy for bone implant application. Colloids Surf B 88:254–259CrossRef Wang H, Guan S, Wang Y, Liu H, Wang H, Wang L, Ren C, Zhu S, Chen K (2011) In vivo degradation behavior of Ca-deficient hydroxyapatite coated Mg–Zn–Ca alloy for bone implant application. Colloids Surf B 88:254–259CrossRef
Zurück zum Zitat Wu SC, Hsu HC, Hsu SK, Wang WH, Ho WF (2011) Preparation and characterization of four different compositions of calcium phosphate scaffolds for bone tissue engineering. Mater Charact 62:526–534CrossRef Wu SC, Hsu HC, Hsu SK, Wang WH, Ho WF (2011) Preparation and characterization of four different compositions of calcium phosphate scaffolds for bone tissue engineering. Mater Charact 62:526–534CrossRef
Zurück zum Zitat Xu J, Wang K, Zu SZ, Han BH, Wei Z (2010) Hierarchial nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effects for energy storage. ACS Nano 4:5019–5026CrossRef Xu J, Wang K, Zu SZ, Han BH, Wei Z (2010) Hierarchial nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effects for energy storage. ACS Nano 4:5019–5026CrossRef
Zurück zum Zitat Yadav M, Rhee KY, Jung IH, Park SJ (2013) Eco-friendly synthesis, characterization and properties of a sodium carboxymethyl cellulose/graphene oxide nanocomposite film. Cellulose 20:687–698CrossRef Yadav M, Rhee KY, Jung IH, Park SJ (2013) Eco-friendly synthesis, characterization and properties of a sodium carboxymethyl cellulose/graphene oxide nanocomposite film. Cellulose 20:687–698CrossRef
Zurück zum Zitat Yasuda K, Gong JP, Katsuyama Y, Nakayama A, Tanabe Y, Kondo E, Ueno M, Osada Y (2005) Biomechanical properties of high-toughness double network hydrogels. Biomaterials 26:4468–4475CrossRef Yasuda K, Gong JP, Katsuyama Y, Nakayama A, Tanabe Y, Kondo E, Ueno M, Osada Y (2005) Biomechanical properties of high-toughness double network hydrogels. Biomaterials 26:4468–4475CrossRef
Zurück zum Zitat Zimmermann KA, LeBlanc JM, Sheets KT, Fox RW, Gatenholm P (2011) Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng, C 31:43–49CrossRef Zimmermann KA, LeBlanc JM, Sheets KT, Fox RW, Gatenholm P (2011) Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng, C 31:43–49CrossRef
Metadaten
Titel
Bacterial cellulose-reinforced hydroxyapatite functionalized graphene oxide: a potential osteoinductive composite
verfasst von
Deepachitra Ramani
Thotapalli P. Sastry
Publikationsdatum
01.10.2014
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 5/2014
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-014-0313-4

Weitere Artikel der Ausgabe 5/2014

Cellulose 5/2014 Zur Ausgabe