Skip to main content
Erschienen in: Cellulose 1/2016

02.11.2015 | Original Paper

Engineering cellulose nanofibre suspensions to control filtration resistance and sheet permeability

verfasst von: Qing Li, Praveena Raj, Fatema Abbas Husain, Swambabu Varanasi, Tom Rainey, Gil Garnier, Warren Batchelor

Erschienen in: Cellulose | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study examines and quantifies the effect of adding polyelectrolytes to cellulose nanofibre suspensions on the gel point of cellulose nanofibre suspensions, which is the lowest solids concentration at which the suspension forms a continuous network. The lower the gel point, the faster the drainage time to produce a sheet and the higher the porosity of the final sheet formed. Two new techniques were designed to measure the dynamic compressibility and the drainability of nanocellulose–polyelectrolyte suspensions. We developed a master curve which showed that the independent variable controlling the behaviour of nanocellulose suspensions and its composite is the structure of the flocculated suspension which is best quantified as the gel point. This was independent of the type of polyelectrolyte used. At an addition level of 2 mg/g of nanofibre, a reduction in gel point over 50 % was achieved using either a high molecular weight (13 MDa) linear cationic polyacrylamide (CPAM, 40 % charge), a dendrimer polyethylenimine of high molecular weight of 750,000 Da (HPEI) or even a low molecular weight of 2000 Da (LPEI). There was no significant difference in the minimum gel point achieved, despite the difference in polyelectrolyte morphology and molecular weight. In this paper, we show that the gel point controls the flow through the fibre suspension, even when comparing fibre suspensions with solids content above the gel point. A lower gel point makes it easier for water to drain through the fibre network, reducing the pressure required to achieve a given dewatering rate and reducing the filtering time required to form a wet laid sheet. We further show that the lower gel point partially controls the structure of the wet laid sheet after it is dried. Halving the gel point increased the air permeability of the dry sheet by 37, 46 and 25 %, when using CPAM, HPEI and LPEI, respectively. The resistance to liquid flow was reduced by 74 and 90 %, when using CPAM and LPEI. Analysing the paper formed shows that sheet forming process and final sheet properties can be engineered and controlled by adding polyelectrolytes to the nanofibre suspension.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ek M, Gellerstedt G, Henriksson G (2009) Paper products physics and technology. Walter de Gruyter, BerlinCrossRef Ek M, Gellerstedt G, Henriksson G (2009) Paper products physics and technology. Walter de Gruyter, BerlinCrossRef
Zurück zum Zitat Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2008) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165. doi:10.1021/bm801065u CrossRef Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2008) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165. doi:10.​1021/​bm801065u CrossRef
Zurück zum Zitat Hubbe MA, Venditti RA, Rojas OJ (2007) Review of factors affecting the release of water from cellulosic fibers during paper manufacturer. BioResources 2(3):500–533 Hubbe MA, Venditti RA, Rojas OJ (2007) Review of factors affecting the release of water from cellulosic fibers during paper manufacturer. BioResources 2(3):500–533
Zurück zum Zitat Lowys M-P, Desbrieres J, Rinaudo M (2000) Rheological characterization of cellulosic microfibril suspensions. Role of polymeric additives. Food Hydrocoll 15:25–32CrossRef Lowys M-P, Desbrieres J, Rinaudo M (2000) Rheological characterization of cellulosic microfibril suspensions. Role of polymeric additives. Food Hydrocoll 15:25–32CrossRef
Zurück zum Zitat Martinez DM, Buckley K, Jivan S, Lindstrom A, Thiruvengadaswamy R, Olson JA, Ruth TJ, Kerekes RJ (2001) Characterizing the mobility of papermaking fibres during sedimentation. In: 12th fundamental research symposium. The science of papermaking, pp 225–254 Martinez DM, Buckley K, Jivan S, Lindstrom A, Thiruvengadaswamy R, Olson JA, Ruth TJ, Kerekes RJ (2001) Characterizing the mobility of papermaking fibres during sedimentation. In: 12th fundamental research symposium. The science of papermaking, pp 225–254
Zurück zum Zitat Mosse WKJ, Boger DV, Simon GP, Garnier G (2012) Effect of cationic polyacrylamides on the interactions between cellulose fibers. Langmuir 28(7):3641–3649. doi:10.1021/la2049579 CrossRef Mosse WKJ, Boger DV, Simon GP, Garnier G (2012) Effect of cationic polyacrylamides on the interactions between cellulose fibers. Langmuir 28(7):3641–3649. doi:10.​1021/​la2049579 CrossRef
Zurück zum Zitat Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A 80(1):155–159. doi:10.1007/s00339-003-2225-2 CrossRef Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A 80(1):155–159. doi:10.​1007/​s00339-003-2225-2 CrossRef
Zurück zum Zitat Nanko H, Pan S (2003) Visualization of polymer adsorption on pulp fiber: polyacrylamide. In: Proceedings of 2003 TAPPI spring technical conference, Chicago, IL Nanko H, Pan S (2003) Visualization of polymer adsorption on pulp fiber: polyacrylamide. In: Proceedings of 2003 TAPPI spring technical conference, Chicago, IL
Zurück zum Zitat Rainey TJ, Doherty WOS, Martinez DM, Brown RJ, Dickson A (2010a) The effect of flocculants on the filtration of bagasse pulp pads. Tappi J, pp 7–14 Rainey TJ, Doherty WOS, Martinez DM, Brown RJ, Dickson A (2010a) The effect of flocculants on the filtration of bagasse pulp pads. Tappi J, pp 7–14
Zurück zum Zitat Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11(9):2195–2198. doi:10.1021/bm100490s CrossRef Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11(9):2195–2198. doi:10.​1021/​bm100490s CrossRef
Zurück zum Zitat Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci: Appl Polym Symp 37:815–827 Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci: Appl Polym Symp 37:815–827
Zurück zum Zitat Vesterinen A, Seppala J (2008) Rheological study of microfibrillar cellulose and dynamic mechanical analysis of paper sheet. Annu Trans Nord Rheol Soc 16:259–262 Vesterinen A, Seppala J (2008) Rheological study of microfibrillar cellulose and dynamic mechanical analysis of paper sheet. Annu Trans Nord Rheol Soc 16:259–262
Zurück zum Zitat Zhu H, Fang Z, Preston C, Li Y, Hu L (2014) Transparent paper: fabrications, properties, and device applications. Energy Environ Sci. doi:10.1039/C3EE43024C Zhu H, Fang Z, Preston C, Li Y, Hu L (2014) Transparent paper: fabrications, properties, and device applications. Energy Environ Sci. doi:10.​1039/​C3EE43024C
Metadaten
Titel
Engineering cellulose nanofibre suspensions to control filtration resistance and sheet permeability
verfasst von
Qing Li
Praveena Raj
Fatema Abbas Husain
Swambabu Varanasi
Tom Rainey
Gil Garnier
Warren Batchelor
Publikationsdatum
02.11.2015
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 1/2016
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-015-0790-0

Weitere Artikel der Ausgabe 1/2016

Cellulose 1/2016 Zur Ausgabe