Skip to main content
Erschienen in: Cellulose 5/2017

16.03.2017 | Original Paper

Preparation and characterization of nanocellulose reinforced semi-interpenetrating polymer network of chitosan hydrogel

verfasst von: U. G. Thennakoon Mudiyanselage Sampath, Yern Chee Ching, Cheng Hock Chuah, Ramesh Singh, Pai-Chen Lin

Erschienen in: Cellulose | Ausgabe 5/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Semi-interpenetrating polymer network hydrogels with improved mechanical properties and remarkable sensitivity toward pH changes were prepared using chitosan reinforced with cellulose nanocrystals (CNCs). Glutaraldehyde was used as a crosslinker because of its high reactivity toward the amine groups of chitosan. In this study, rod-shaped CNCs that were approximately 200–300 nm in length and 40–50 nm in width were prepared from microcrystalline cellulose via sulfuric acid hydrolysis. CNC ratios of 0, 0.5, 1, 1.5, 2, and 2.5% were selected to study the effects of CNCs on the mechanical properties and swelling behavior of the chitosan hydrogel. The crosslinking reaction between chitosan and glutaraldehyde was confirmed by the presence of a –C=N stretching group at 1548 cm−1 in the Fourier transform infrared spectrum of chitosan hydrogel. The crosslinking degree of the chitosan hydrogel was 83.6%. The X-ray diffraction patterns confirmed that adding CNCs induced a combination of amorphous and crystalline regions in the hydrogel matrix. Mechanical tests showed that the maximum compression of the chitosan hydrogel increased from 25.9 ± 1 to 50.8 ± 3 kPa with increasing CNC content from 0 to 2.5%. CNC-chitosan hydrogels exhibited excellent pH sensitivity and producing the maximum swelling ratio under acidic condition (pH 4.01). On the basis of the results of this study, we assume that the improved mechanical properties and excellent pH sensitivity of the CNC-chitosan hydrogels will expand their application scopes in various fields, such as tissue engineering, pharmaceuticals, and drug delivery.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121CrossRef Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121CrossRef
Zurück zum Zitat Azeredo H, Mattoso LHC, Avena-Bustillos RJ, Munford ML, Wood D, McHugh TH (2010) Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J Food Sci 75:N1–N7CrossRef Azeredo H, Mattoso LHC, Avena-Bustillos RJ, Munford ML, Wood D, McHugh TH (2010) Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J Food Sci 75:N1–N7CrossRef
Zurück zum Zitat Bangyekan C, Aht-Ong D, Srikulkit K (2006) Preparation and properties evaluation of chitosan-coated cassava starch films. Carbohydr Polym 63:61–71CrossRef Bangyekan C, Aht-Ong D, Srikulkit K (2006) Preparation and properties evaluation of chitosan-coated cassava starch films. Carbohydr Polym 63:61–71CrossRef
Zurück zum Zitat Brugnerotto J, Lizardi J, Goycoolea F, Argüelles-Monal W, Desbrieres J, Rinaudo M (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer 42:3569–3580CrossRef Brugnerotto J, Lizardi J, Goycoolea F, Argüelles-Monal W, Desbrieres J, Rinaudo M (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer 42:3569–3580CrossRef
Zurück zum Zitat Budianto E, Muthoharoh SP, Nizardo NM (2015) Effect of crosslinking agents, pH and temperature on swelling behavior of cross-linked chitosan hydrogel. Asian J Appl Sci 3:581–588 Budianto E, Muthoharoh SP, Nizardo NM (2015) Effect of crosslinking agents, pH and temperature on swelling behavior of cross-linked chitosan hydrogel. Asian J Appl Sci 3:581–588
Zurück zum Zitat Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267CrossRef Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267CrossRef
Zurück zum Zitat Celebi H, Kurt A (2015) Effects of processing on the properties of chitosan/cellulose nanocrystal films. Carbohydr Polym 133:284–293CrossRef Celebi H, Kurt A (2015) Effects of processing on the properties of chitosan/cellulose nanocrystal films. Carbohydr Polym 133:284–293CrossRef
Zurück zum Zitat Chang C-W, van Spreeuwel A, Zhang C, Varghese S (2010) PEG/clay nanocomposite hydrogel: a mechanically robust tissue engineering scaffold. Soft Matter 6:5157–5164CrossRef Chang C-W, van Spreeuwel A, Zhang C, Varghese S (2010) PEG/clay nanocomposite hydrogel: a mechanically robust tissue engineering scaffold. Soft Matter 6:5157–5164CrossRef
Zurück zum Zitat Chen RH, Lin JH, Yang MH (1994) Relationships between the chain flexibilities of chitosan molecules and the physical properties of their casted films. Carbohydr Polym 24:41–46CrossRef Chen RH, Lin JH, Yang MH (1994) Relationships between the chain flexibilities of chitosan molecules and the physical properties of their casted films. Carbohydr Polym 24:41–46CrossRef
Zurück zum Zitat Ching YC, Ng TS (2014) Effect of preparation conditions on cellulose from oil palm empty fruit bunch fiber. Bioresource 9(4):6373–6385CrossRef Ching YC, Ng TS (2014) Effect of preparation conditions on cellulose from oil palm empty fruit bunch fiber. Bioresource 9(4):6373–6385CrossRef
Zurück zum Zitat Ching YC, Ashiqur R, Yong KC, Nazatul LS, Cheng HC (2015) Preparation and characterization of polyvinyl alcohol based composite reinforced with nanocellulose and nanosilica. BioResources 10(2):3364–3377CrossRef Ching YC, Ashiqur R, Yong KC, Nazatul LS, Cheng HC (2015) Preparation and characterization of polyvinyl alcohol based composite reinforced with nanocellulose and nanosilica. BioResources 10(2):3364–3377CrossRef
Zurück zum Zitat Ching YC, Md Ershad A, Luqman CA, Choo KW, Yong CK, Sabariah JJ, Cheng HC, Liou NS (2016) Rheological properties of cellulose nanocrystal-embedded polymer composites: a review. Cellulose 23:1011–1030CrossRef Ching YC, Md Ershad A, Luqman CA, Choo KW, Yong CK, Sabariah JJ, Cheng HC, Liou NS (2016) Rheological properties of cellulose nanocrystal-embedded polymer composites: a review. Cellulose 23:1011–1030CrossRef
Zurück zum Zitat Cho M-J, Park B-D (2011) Tensile and thermal properties of nanocellulose-reinforced poly (vinyl alcohol) nanocomposites. J Ind Eng Chem 17:36–40CrossRef Cho M-J, Park B-D (2011) Tensile and thermal properties of nanocellulose-reinforced poly (vinyl alcohol) nanocomposites. J Ind Eng Chem 17:36–40CrossRef
Zurück zum Zitat Choo KW, Ching YC, Chuah CH, Sabariah JJ, Liou NS (2016) Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber. Materials 9:644CrossRef Choo KW, Ching YC, Chuah CH, Sabariah JJ, Liou NS (2016) Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber. Materials 9:644CrossRef
Zurück zum Zitat Dong F, Li S, Yan M, Li C (2014) Preparation and properties of chitosan/nanocrystalline cellulose composite films for food packaging. Asian J Chem 26:5895 Dong F, Li S, Yan M, Li C (2014) Preparation and properties of chitosan/nanocrystalline cellulose composite films for food packaging. Asian J Chem 26:5895
Zurück zum Zitat Ershad A, Yong KC, Ching YC, Chuah CH, Liou NS (2015) Effect of single and double stage chemically treated kenaf fibers on mechanical properties of polyvinyl alcohol film. Bioresource 10:822–838 Ershad A, Yong KC, Ching YC, Chuah CH, Liou NS (2015) Effect of single and double stage chemically treated kenaf fibers on mechanical properties of polyvinyl alcohol film. Bioresource 10:822–838
Zurück zum Zitat Fathurrahmi, Rahmi, Purnaratrie A, Irwansyah (2015) Comparative adsorption of Fe(III) and Cd(II) ions on glutaraldehyde crosslinked chitosan–coated cristobalite. Orient J Chem 31:2071–2076CrossRef Fathurrahmi, Rahmi, Purnaratrie A, Irwansyah (2015) Comparative adsorption of Fe(III) and Cd(II) ions on glutaraldehyde crosslinked chitosan–coated cristobalite. Orient J Chem 31:2071–2076CrossRef
Zurück zum Zitat Fernandes Queiroz M, Melo KRT, Sabry DA, Sassaki GL, Rocha HAO (2014) Does the use of chitosan contribute to oxalate kidney stone formation? Mar Drugs 13:141–158CrossRef Fernandes Queiroz M, Melo KRT, Sabry DA, Sassaki GL, Rocha HAO (2014) Does the use of chitosan contribute to oxalate kidney stone formation? Mar Drugs 13:141–158CrossRef
Zurück zum Zitat Fernandes SC, Freire CS, Silvestre AJ, Neto CP, Gandini A, Berglund LA, Salmén L (2010) Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydr Polym 81:394–401CrossRef Fernandes SC, Freire CS, Silvestre AJ, Neto CP, Gandini A, Berglund LA, Salmén L (2010) Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydr Polym 81:394–401CrossRef
Zurück zum Zitat French A (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef French A (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef
Zurück zum Zitat French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588CrossRef French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588CrossRef
Zurück zum Zitat George J, Sabapathi S (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45–54CrossRef George J, Sabapathi S (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45–54CrossRef
Zurück zum Zitat Goh KY, Ching YC, Cheng HC, Luqman CA, Liou N (2016) Individualization of microfibrillated celluloses from oil palm empty fruit bunch: comparative studies between acid hydrolysis and ammonium persulfate oxidation. Cellulose 23:379–390. doi:10.1007/s10570-015-0812-y CrossRef Goh KY, Ching YC, Cheng HC, Luqman CA, Liou N (2016) Individualization of microfibrillated celluloses from oil palm empty fruit bunch: comparative studies between acid hydrolysis and ammonium persulfate oxidation. Cellulose 23:379–390. doi:10.​1007/​s10570-015-0812-y CrossRef
Zurück zum Zitat González K, Retegi A, González A, Eceiza A, Gabilondo N (2015) Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites. Carbohydr Polym 117:83–90CrossRef González K, Retegi A, González A, Eceiza A, Gabilondo N (2015) Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites. Carbohydr Polym 117:83–90CrossRef
Zurück zum Zitat Han J, Lei T, Wu Q (2014) High-water-content mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: dynamic rheological properties and hydrogel formation mechanism. Carbohydr Polym 102:306–316CrossRef Han J, Lei T, Wu Q (2014) High-water-content mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: dynamic rheological properties and hydrogel formation mechanism. Carbohydr Polym 102:306–316CrossRef
Zurück zum Zitat Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007CrossRef Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007CrossRef
Zurück zum Zitat Hussain R, Iman M, Maji TK (2013) Determination of degree of deacetylation of chitosan and their effect on the release behavior of essential oil from chitosan and chitosan-gelatin complex microcapsules. Int J Adv Eng Appl 6:4–12 Hussain R, Iman M, Maji TK (2013) Determination of degree of deacetylation of chitosan and their effect on the release behavior of essential oil from chitosan and chitosan-gelatin complex microcapsules. Int J Adv Eng Appl 6:4–12
Zurück zum Zitat Ji C, Annabi N, Khademhosseini A, Dehghani F (2011) Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Acta Biomater 7:1653–1664CrossRef Ji C, Annabi N, Khademhosseini A, Dehghani F (2011) Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Acta Biomater 7:1653–1664CrossRef
Zurück zum Zitat Khan A, Khan RA, Salmieri S, Le Tien C, Riedl B, Bouchard J, Chauve G, Tan V, Kamal MR, Lacroix M (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 90:1601–1608CrossRef Khan A, Khan RA, Salmieri S, Le Tien C, Riedl B, Bouchard J, Chauve G, Tan V, Kamal MR, Lacroix M (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 90:1601–1608CrossRef
Zurück zum Zitat Khoo R, Ismail H, Chow W (2016) Thermal and morphological properties of poly (lactic acid)/nanocellulose nanocomposites. Proced Chem 19:788–794CrossRef Khoo R, Ismail H, Chow W (2016) Thermal and morphological properties of poly (lactic acid)/nanocellulose nanocomposites. Proced Chem 19:788–794CrossRef
Zurück zum Zitat Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem 2:1–8 Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem 2:1–8
Zurück zum Zitat Leceta I, Guerrero P, De la Caba K (2013) Functional properties of chitosan-based films. Carbohydr Polym 93:339–346CrossRef Leceta I, Guerrero P, De la Caba K (2013) Functional properties of chitosan-based films. Carbohydr Polym 93:339–346CrossRef
Zurück zum Zitat Li B, Shan C-L, Zhou Q, Fang Y, Wang Y-L, Xu F, Han L-R, Ibrahim M, Guo L-B, Xie G-L (2013) Synthesis, characterization, and antibacterial activity of cross-linked chitosan-glutaraldehyde. Mar Drugs 11:1534–1552CrossRef Li B, Shan C-L, Zhou Q, Fang Y, Wang Y-L, Xu F, Han L-R, Ibrahim M, Guo L-B, Xie G-L (2013) Synthesis, characterization, and antibacterial activity of cross-linked chitosan-glutaraldehyde. Mar Drugs 11:1534–1552CrossRef
Zurück zum Zitat Li W, Lan Y, Guo R, Zhang Y, Xue W, Zhang Y (2015) In vitro and in vivo evaluation of a novel collagen/cellulose nanocrystals scaffold for achieving the sustained release of basic fibroblast growth factor. J Biomater Appl 29:882–893CrossRef Li W, Lan Y, Guo R, Zhang Y, Xue W, Zhang Y (2015) In vitro and in vivo evaluation of a novel collagen/cellulose nanocrystals scaffold for achieving the sustained release of basic fibroblast growth factor. J Biomater Appl 29:882–893CrossRef
Zurück zum Zitat Maitra J, Shukla VK (2014) Cross-linking in hydrogels-a review. Am J Polym Sci 4:25–31 Maitra J, Shukla VK (2014) Cross-linking in hydrogels-a review. Am J Polym Sci 4:25–31
Zurück zum Zitat Mariano M, El Kissi N, Dufresne A (2016) Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites. Carbohydr Polym 137:174–183CrossRef Mariano M, El Kissi N, Dufresne A (2016) Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites. Carbohydr Polym 137:174–183CrossRef
Zurück zum Zitat Mohammed N, Grishkewich N, Berry RM, Tam KC (2015) Cellulose nanocrystal–alginate hydrogel beads as novel adsorbents for organic dyes in aqueous solutions. Cellulose 22:3725–3738CrossRef Mohammed N, Grishkewich N, Berry RM, Tam KC (2015) Cellulose nanocrystal–alginate hydrogel beads as novel adsorbents for organic dyes in aqueous solutions. Cellulose 22:3725–3738CrossRef
Zurück zum Zitat Mohd Nasir NF, Mohd Zain N, Raha MG, Kadri NA (2005) Characterization of chitosan-poly (ethylene oxide) blends as haemodialysis membrane. Am J Appl Sci 2(12):1578–1583CrossRef Mohd Nasir NF, Mohd Zain N, Raha MG, Kadri NA (2005) Characterization of chitosan-poly (ethylene oxide) blends as haemodialysis membrane. Am J Appl Sci 2(12):1578–1583CrossRef
Zurück zum Zitat Mohd ACM, Ching YC, Luqman CA, Poh SC, Chuah CH (2016) Review of bionanocomposite coating films and their applications. Polymers 8:246CrossRef Mohd ACM, Ching YC, Luqman CA, Poh SC, Chuah CH (2016) Review of bionanocomposite coating films and their applications. Polymers 8:246CrossRef
Zurück zum Zitat Ng TS, Ching YC, Awanis N, Ishenny N, Rahman MR (2014) Effect of bleaching condition on thermal properties and UV-transmittance of PVA/cellulose biocomposites. Mater Res Innov 18:400–404CrossRef Ng TS, Ching YC, Awanis N, Ishenny N, Rahman MR (2014) Effect of bleaching condition on thermal properties and UV-transmittance of PVA/cellulose biocomposites. Mater Res Innov 18:400–404CrossRef
Zurück zum Zitat Novo LP, Bras J, García A, Belgacem N, Curvelo AA (2015) Subcritical water: a method for green production of cellulose nanocrystals. ACS Sustain Chem Eng 3:2839–2846CrossRef Novo LP, Bras J, García A, Belgacem N, Curvelo AA (2015) Subcritical water: a method for green production of cellulose nanocrystals. ACS Sustain Chem Eng 3:2839–2846CrossRef
Zurück zum Zitat Ooi SY, Ahmad I, Amin MCIM (2015) Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems. Ind Crops Prod. doi:10.1016/j.indcrop.2015.11.082 Ooi SY, Ahmad I, Amin MCIM (2015) Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems. Ind Crops Prod. doi:10.​1016/​j.​indcrop.​2015.​11.​082
Zurück zum Zitat Park M, Lee D, Hyun J (2015) Nanocellulose-alginate hydrogel for cell encapsulation. Carbohydr Polym 116:223–228CrossRef Park M, Lee D, Hyun J (2015) Nanocellulose-alginate hydrogel for cell encapsulation. Carbohydr Polym 116:223–228CrossRef
Zurück zum Zitat Prajapati BG, Patel MM (2010) Crosslinked chitosan gel for local drug delivery of clotrimazole. J Sci Technol 21:43–52 Prajapati BG, Patel MM (2010) Crosslinked chitosan gel for local drug delivery of clotrimazole. J Sci Technol 21:43–52
Zurück zum Zitat Rao KK, Naidu BVK, Subha M, Sairam M, Aminabhavi T (2006) Novel chitosan-based pH-sensitive interpenetrating network microgels for the controlled release of cefadroxil. Carbohydr Polym 66:333–344CrossRef Rao KK, Naidu BVK, Subha M, Sairam M, Aminabhavi T (2006) Novel chitosan-based pH-sensitive interpenetrating network microgels for the controlled release of cefadroxil. Carbohydr Polym 66:333–344CrossRef
Zurück zum Zitat Rohindra DR, Nand AV, Khurma JR (2004) Swelling properties of chitosan hydrogels. South Pac J Nat Appl Sci 22:32–35 Rohindra DR, Nand AV, Khurma JR (2004) Swelling properties of chitosan hydrogels. South Pac J Nat Appl Sci 22:32–35
Zurück zum Zitat Rubentheren V, Ward TA, Ching YC, Tang CK (2015a) Processing and analysis of chitosan nanocomposites reinforced with chitin whiskers and tannic acid as a crosslinker. Carbohydr Polym 115:379–387CrossRef Rubentheren V, Ward TA, Ching YC, Tang CK (2015a) Processing and analysis of chitosan nanocomposites reinforced with chitin whiskers and tannic acid as a crosslinker. Carbohydr Polym 115:379–387CrossRef
Zurück zum Zitat Rubentheren V, Ward TA, Ching YC, Nair P (2015b) Physical and chemical reinforcement of chitosan film using nanocrystalline cellulose and tannic acid. Cellulose 22:2529–2541CrossRef Rubentheren V, Ward TA, Ching YC, Nair P (2015b) Physical and chemical reinforcement of chitosan film using nanocrystalline cellulose and tannic acid. Cellulose 22:2529–2541CrossRef
Zurück zum Zitat Rubentheren V, Ward TA, Ching YC, Nair P, Erfan S, Christopher F (2016) Effect of heat treatment on chitosan nanocomposite film reinforced with nanocrystalline cellulose and tannic acid. Carbohydr Polym 140:202–208CrossRef Rubentheren V, Ward TA, Ching YC, Nair P, Erfan S, Christopher F (2016) Effect of heat treatment on chitosan nanocomposite film reinforced with nanocrystalline cellulose and tannic acid. Carbohydr Polym 140:202–208CrossRef
Zurück zum Zitat Sampath UG, Ching YC, Chuah CH, Sabariah JJ, Lin PC (2016) Fabrication of porous materials from natural/synthesis biopolymers and their composites. Materials 9:991CrossRef Sampath UG, Ching YC, Chuah CH, Sabariah JJ, Lin PC (2016) Fabrication of porous materials from natural/synthesis biopolymers and their composites. Materials 9:991CrossRef
Zurück zum Zitat Seng KC, Ealid M, Ching YC, Haniff M, Khalid K, Beg MTH (2014) Preparation and characterization on polyvinyl alcohol/oil palm empty fruit bunch fiber composite. Mater Res Innov 18:364–367 Seng KC, Ealid M, Ching YC, Haniff M, Khalid K, Beg MTH (2014) Preparation and characterization on polyvinyl alcohol/oil palm empty fruit bunch fiber composite. Mater Res Innov 18:364–367
Zurück zum Zitat Shapiro JM, Oyen ML (2013) Hydrogel composite materials for tissue engineering scaffolds. JOM 65:505–516CrossRef Shapiro JM, Oyen ML (2013) Hydrogel composite materials for tissue engineering scaffolds. JOM 65:505–516CrossRef
Zurück zum Zitat Shivashankar M, Mandal BK (2012) A review on interpenetrating polymer network. Int J Phram Phram Sci 4:1–7 Shivashankar M, Mandal BK (2012) A review on interpenetrating polymer network. Int J Phram Phram Sci 4:1–7
Zurück zum Zitat Sullivan EM, Moon RJ, Kalaitzidou K (2015) Processing and characterization of cellulose nanocrystals/polylactic acid nanocomposite films. Materials 8:8106–8116CrossRef Sullivan EM, Moon RJ, Kalaitzidou K (2015) Processing and characterization of cellulose nanocrystals/polylactic acid nanocomposite films. Materials 8:8106–8116CrossRef
Zurück zum Zitat Tan BK, Ching YC, Poh SC, Luqman CA, Gan SN (2015) Review of natural fiber reinforced poly(vinyl alcohol) based composites: application and Opportunity. Polymers 7:2205–2222CrossRef Tan BK, Ching YC, Poh SC, Luqman CA, Gan SN (2015) Review of natural fiber reinforced poly(vinyl alcohol) based composites: application and Opportunity. Polymers 7:2205–2222CrossRef
Zurück zum Zitat Tanpichai S, Oksman K (2016) Cross-linked nanocomposite hydrogels based on cellulose nanocrystals and PVA: mechanical properties and creep recovery. Compos A Appl Sci Manuf 88:226–233CrossRef Tanpichai S, Oksman K (2016) Cross-linked nanocomposite hydrogels based on cellulose nanocrystals and PVA: mechanical properties and creep recovery. Compos A Appl Sci Manuf 88:226–233CrossRef
Zurück zum Zitat Velásquez-Cock J, Ramírez E, Betancourt S, Putaux J-L, Osorio M, Castro C, Gañán P, Zuluaga R (2014) Influence of the acid type in the production of chitosan films reinforced with bacterial nanocellulose. Int J Biol Macromol 69:208–213CrossRef Velásquez-Cock J, Ramírez E, Betancourt S, Putaux J-L, Osorio M, Castro C, Gañán P, Zuluaga R (2014) Influence of the acid type in the production of chitosan films reinforced with bacterial nanocellulose. Int J Biol Macromol 69:208–213CrossRef
Zurück zum Zitat Weng L, Chen X, Chen W (2007) Rheological characterization of in situ crosslinkable hydrogels formulated from oxidized dextran and N-carboxyethyl chitosan. Biomacromol 8:1109–1115CrossRef Weng L, Chen X, Chen W (2007) Rheological characterization of in situ crosslinkable hydrogels formulated from oxidized dextran and N-carboxyethyl chitosan. Biomacromol 8:1109–1115CrossRef
Zurück zum Zitat Yang J, Han C-R, Duan J-F, Ma M-G, Zhang X-M, Xu F, Sun R-C, Xie X-M (2012) Studies on the properties and formation mechanism of flexible nanocomposite hydrogels from cellulose nanocrystals and poly (acrylic acid). J Mater Chem 22:22467–22480CrossRef Yang J, Han C-R, Duan J-F, Ma M-G, Zhang X-M, Xu F, Sun R-C, Xie X-M (2012) Studies on the properties and formation mechanism of flexible nanocomposite hydrogels from cellulose nanocrystals and poly (acrylic acid). J Mater Chem 22:22467–22480CrossRef
Zurück zum Zitat Yang X, Bakaic E, Hoare T, Cranston ED (2013) Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: morphology, rheology, degradation, and cytotoxicity. Biomacromol 14:4447–4455CrossRef Yang X, Bakaic E, Hoare T, Cranston ED (2013) Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: morphology, rheology, degradation, and cytotoxicity. Biomacromol 14:4447–4455CrossRef
Zurück zum Zitat Yi H, Wu L-Q, Bentley WE, Ghodssi R, Rubloff GW, Culver JN, Payne GF (2005) Biofabrication with chitosan. Biomacromol 6:2881–2894CrossRef Yi H, Wu L-Q, Bentley WE, Ghodssi R, Rubloff GW, Culver JN, Payne GF (2005) Biofabrication with chitosan. Biomacromol 6:2881–2894CrossRef
Zurück zum Zitat Zhang Z, Wu Q, Song K, Lei T, Wu Y (2015) Poly (vinylidene fluoride)/cellulose nanocrystals composites: rheological, hydrophilicity, thermal and mechanical properties. Cellulose 22:2431–2441CrossRef Zhang Z, Wu Q, Song K, Lei T, Wu Y (2015) Poly (vinylidene fluoride)/cellulose nanocrystals composites: rheological, hydrophilicity, thermal and mechanical properties. Cellulose 22:2431–2441CrossRef
Zurück zum Zitat Zhu J, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Exp Rev Med Devices 8:607–626CrossRef Zhu J, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Exp Rev Med Devices 8:607–626CrossRef
Metadaten
Titel
Preparation and characterization of nanocellulose reinforced semi-interpenetrating polymer network of chitosan hydrogel
verfasst von
U. G. Thennakoon Mudiyanselage Sampath
Yern Chee Ching
Cheng Hock Chuah
Ramesh Singh
Pai-Chen Lin
Publikationsdatum
16.03.2017
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 5/2017
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-017-1251-8

Weitere Artikel der Ausgabe 5/2017

Cellulose 5/2017 Zur Ausgabe