Skip to main content
Erschienen in: Cellulose 6/2017

07.04.2017 | Original Paper

Comparative physical and chemical analyses of cotton fibers from two near isogenic upland lines differing in fiber wall thickness

verfasst von: Hee Jin Kim, Christopher M. Lee, Kevin Dazen, Christopher D. Delhom, Yongliang Liu, James E. Rodgers, Alfred D. French, Seong H. Kim

Erschienen in: Cellulose | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The thickness of cotton fiber cell walls is an important property that partially determines the economic value of cotton. To better understand the physical and chemical manifestations of the genetic variations that regulate the degree of fiber wall thickness, we used a comprehensive set of methods to compare fiber properties of the immature fiber (im) mutant, called immature because it produces thin-walled fibers, and its isogenic wild type Texas Marker-1 (TM-1) that is a standard upland cotton variety producing normal fibers with thick walls. Comprehensive structural analyses showed that im and TM-1 fibers shared a common developmental process of cell wall thickening, contrary to the previous report that the phase in the im fiber development might be retarded. No significant differences were found in cellulose content, crystallinity index, crystal size, matrix polymer composition, or in ribbon width between the isogenic fibers. In contrast, significant differences were detected in their linear density, cross-section micrographs of fibers from opened bolls, and in the lateral order between their cellulose microfibrils (CMFs). The cellulose mass in a given fiber length was lower and the CMFs were less organized in the im fibers compared with the TM-1 fibers. The presented results imply that the disruption of CMF organization or assembly in the cell walls may be associated with the immature phenotype of the im fibers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abidi N, Hequet E, Cabrales L, Gannaway J, Wilkins T, Wells LW (2008) Evaluating cell wall structure and composition of developing cotton fibers using Fourier transform infrared spectroscopy and thermogravimetric analysis. J Appl Polym Sci 107:476–486CrossRef Abidi N, Hequet E, Cabrales L, Gannaway J, Wilkins T, Wells LW (2008) Evaluating cell wall structure and composition of developing cotton fibers using Fourier transform infrared spectroscopy and thermogravimetric analysis. J Appl Polym Sci 107:476–486CrossRef
Zurück zum Zitat Abidi N, Cabrales L, Hequet E (2010) Fourier transform infrared spectroscopic approach to the study of the secondary cell wall development in cotton fiber. Cellulose 17:309–320CrossRef Abidi N, Cabrales L, Hequet E (2010) Fourier transform infrared spectroscopic approach to the study of the secondary cell wall development in cotton fiber. Cellulose 17:309–320CrossRef
Zurück zum Zitat Abidi N, Cabrales L, Haigler CH (2014) Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohyd Polym 100:9–16CrossRef Abidi N, Cabrales L, Haigler CH (2014) Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohyd Polym 100:9–16CrossRef
Zurück zum Zitat Agarwal UP, Reiner RS, Ralph SA (2010) Cellulose I crystallinity determination using FT-Raman spectroscopy: univariate and multivariate methods. Cellulose 17:721–733CrossRef Agarwal UP, Reiner RS, Ralph SA (2010) Cellulose I crystallinity determination using FT-Raman spectroscopy: univariate and multivariate methods. Cellulose 17:721–733CrossRef
Zurück zum Zitat ASTM standard D1442-00 (2012a) Standard test method for maturity of cotton fibers (sodium hydroxide swelling and polarized light procedures). American Society for Testing and Materials, West Conshohocken ASTM standard D1442-00 (2012a) Standard test method for maturity of cotton fibers (sodium hydroxide swelling and polarized light procedures). American Society for Testing and Materials, West Conshohocken
Zurück zum Zitat ASTM standard D1577-07 (2012b) Standard test method for linear density of textile fibers. Option A, Fiber bundle weighing. American Society for Testing and Materials, Philadelphia ASTM standard D1577-07 (2012b) Standard test method for linear density of textile fibers. Option A, Fiber bundle weighing. American Society for Testing and Materials, Philadelphia
Zurück zum Zitat Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285CrossRef Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285CrossRef
Zurück zum Zitat Barnette AL et al (2011) Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy. Biomacromolecules 12:2434–2439CrossRef Barnette AL et al (2011) Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy. Biomacromolecules 12:2434–2439CrossRef
Zurück zum Zitat Benedict CR, Kohel RJ, Jividen GM (1994) A cellulose cotton fiber mutant: effect on fiber strength. In: Jividen GM, Benedict CR (eds) Proceedings of biochemistry of cotton workshop. Cotton Incorporated, Raleigh, pp 115–120 Benedict CR, Kohel RJ, Jividen GM (1994) A cellulose cotton fiber mutant: effect on fiber strength. In: Jividen GM, Benedict CR (eds) Proceedings of biochemistry of cotton workshop. Cotton Incorporated, Raleigh, pp 115–120
Zurück zum Zitat Benedict CR, Kohel JR, Lewis HL (1999) Cotton fiber quality. In: Smith CW, Cothren JT (eds) Cotton:origin, history, technology, and production. Wiley, New York, pp 269–288 Benedict CR, Kohel JR, Lewis HL (1999) Cotton fiber quality. In: Smith CW, Cothren JT (eds) Cotton:origin, history, technology, and production. Wiley, New York, pp 269–288
Zurück zum Zitat Bradow JM, Davidonis GH (2000) Quantitation of fiber quality and the cotton production-processing interface: a physiologist’s perspective. J Cotton Sci 4:34–64 Bradow JM, Davidonis GH (2000) Quantitation of fiber quality and the cotton production-processing interface: a physiologist’s perspective. J Cotton Sci 4:34–64
Zurück zum Zitat Brims M, Hwang H (2010) Introducing Cottonscope: a rapid and precise measurement of cotton fibre maturity based on siromat. National Cotton Council, New Orleans Brims M, Hwang H (2010) Introducing Cottonscope: a rapid and precise measurement of cotton fibre maturity based on siromat. National Cotton Council, New Orleans
Zurück zum Zitat Greene PR, Bain CD (2005) Total internal reflection Raman spectroscopy of barley leaf epicuticular waxes in vivo. Colloids Surf B 45:174–180CrossRef Greene PR, Bain CD (2005) Total internal reflection Raman spectroscopy of barley leaf epicuticular waxes in vivo. Colloids Surf B 45:174–180CrossRef
Zurück zum Zitat Haigler C (2010) Physiological and anatomical factors determining fiber structure and utility. In: Stewart JM, Oosterhuis DM, Heitholt JJ, Mauney JR (eds) Physiology of cotton. Springer, New York, pp 33–47CrossRef Haigler C (2010) Physiological and anatomical factors determining fiber structure and utility. In: Stewart JM, Oosterhuis DM, Heitholt JJ, Mauney JR (eds) Physiology of cotton. Springer, New York, pp 33–47CrossRef
Zurück zum Zitat Haigler CH, Betancur L, Stiff MR, Tuttle JR (2012) Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Front Plant Sci 3(104):1–7 Haigler CH, Betancur L, Stiff MR, Tuttle JR (2012) Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Front Plant Sci 3(104):1–7
Zurück zum Zitat Hieu HC, Tuan NA, Li H, Miyauchi Y, Mizutani G (2011) Sum frequency generation microscopy study of cellulose fibers. Appl Spectrosc 65:1254–1259CrossRef Hieu HC, Tuan NA, Li H, Miyauchi Y, Mizutani G (2011) Sum frequency generation microscopy study of cellulose fibers. Appl Spectrosc 65:1254–1259CrossRef
Zurück zum Zitat Kafle K, Xi X, Lee CM, Tittmann BR, Cosgrove DJ, Park YB, Kim SH (2014) Cellulose microfibril orientation in onion (Allium cepa L.) epidermis studied by atomic force microscopy (AFM) and vibrational sum frequency generation (SFG) spectroscopy. Cellulose 21:1075–1086CrossRef Kafle K, Xi X, Lee CM, Tittmann BR, Cosgrove DJ, Park YB, Kim SH (2014) Cellulose microfibril orientation in onion (Allium cepa L.) epidermis studied by atomic force microscopy (AFM) and vibrational sum frequency generation (SFG) spectroscopy. Cellulose 21:1075–1086CrossRef
Zurück zum Zitat Kim HJ (2015) Fiber biology. In: Fang DD, Percy RG (eds) Cotton. Agronomy monograph, 2nd edn. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, pp 97–127 Kim HJ (2015) Fiber biology. In: Fang DD, Percy RG (eds) Cotton. Agronomy monograph, 2nd edn. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, pp 97–127
Zurück zum Zitat Kim HJ, Triplett BA (2001) Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol 127:1361–1366CrossRef Kim HJ, Triplett BA (2001) Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol 127:1361–1366CrossRef
Zurück zum Zitat Kim HJ, Moon HS, Delhom CD, Zeng L, Fang DD (2013a) Molecular markers associated with the immature fiber (im) gene affecting the degree of fiber cell wall thickening in cotton (Gossypium hirsutum L.). Theor Appl Genet 126:23–31CrossRef Kim HJ, Moon HS, Delhom CD, Zeng L, Fang DD (2013a) Molecular markers associated with the immature fiber (im) gene affecting the degree of fiber cell wall thickening in cotton (Gossypium hirsutum L.). Theor Appl Genet 126:23–31CrossRef
Zurück zum Zitat Kim HJ, Tang Y, Moon HS, Delhom CD, Fang DD (2013b) Functional analyses of cotton (Gossypium hirsutum L.) immature fiber (im) mutant infer that fiber cell wall development is associated with stress responses. BMC Genom 14:889CrossRef Kim HJ, Tang Y, Moon HS, Delhom CD, Fang DD (2013b) Functional analyses of cotton (Gossypium hirsutum L.) immature fiber (im) mutant infer that fiber cell wall development is associated with stress responses. BMC Genom 14:889CrossRef
Zurück zum Zitat Kim SH, Lee CM, Kafle K (2013c) Characterization of crystalline cellulose in biomass: basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG. Korean J Chem Eng 30:2127–2141CrossRef Kim SH, Lee CM, Kafle K (2013c) Characterization of crystalline cellulose in biomass: basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG. Korean J Chem Eng 30:2127–2141CrossRef
Zurück zum Zitat Kim HJ, Rodgers J, Delhom C, Cui X (2014) Comparisons of methods measuring fiber maturity and fineness of Upland cotton fibers containing different degree of fiber cell wall development. Text Res J 84:1622–1633CrossRef Kim HJ, Rodgers J, Delhom C, Cui X (2014) Comparisons of methods measuring fiber maturity and fineness of Upland cotton fibers containing different degree of fiber cell wall development. Text Res J 84:1622–1633CrossRef
Zurück zum Zitat Kohel RJ, McMichael SC (1990) Immature fiber mutant of upland cotton. Crop Sci 30:419–421CrossRef Kohel RJ, McMichael SC (1990) Immature fiber mutant of upland cotton. Crop Sci 30:419–421CrossRef
Zurück zum Zitat Kohel R, Richmond T, Lewis C (1970) Texas marker-1. Description of a genetic standard for Gossypium hirsutum L. Crop Sci 10:670–671CrossRef Kohel R, Richmond T, Lewis C (1970) Texas marker-1. Description of a genetic standard for Gossypium hirsutum L. Crop Sci 10:670–671CrossRef
Zurück zum Zitat Kohel RJ, Quisenberry JE, Benedict CR (1974) Fiber elongation and dry weight changes in mutant lines of cotton. Crop Sci 14:471–474CrossRef Kohel RJ, Quisenberry JE, Benedict CR (1974) Fiber elongation and dry weight changes in mutant lines of cotton. Crop Sci 14:471–474CrossRef
Zurück zum Zitat Kohel RJ, Stelly DM, Yu JZ (2002) Tests of six cotton (Gossypium hirsutum L.) mutants for association with aneuploids. J Hered 93:130–132CrossRef Kohel RJ, Stelly DM, Yu JZ (2002) Tests of six cotton (Gossypium hirsutum L.) mutants for association with aneuploids. J Hered 93:130–132CrossRef
Zurück zum Zitat Kothari N, Abidi N, Hequet E (2007) Wilkins T Fiber quality variability within a plant. In: World cotton research conference-4, Lubbock, 10–14 Sept 2007. International Cotton Advisory Committee (ICAC) Kothari N, Abidi N, Hequet E (2007) Wilkins T Fiber quality variability within a plant. In: World cotton research conference-4, Lubbock, 10–14 Sept 2007. International Cotton Advisory Committee (ICAC)
Zurück zum Zitat Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromol 2:410–416CrossRef Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromol 2:410–416CrossRef
Zurück zum Zitat Lee CM, Mohamed NM, Watts HD, Kubicki JD, Kim SH (2013) Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ. J Phys Chem B 117:6681–6692CrossRef Lee CM, Mohamed NM, Watts HD, Kubicki JD, Kim SH (2013) Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ. J Phys Chem B 117:6681–6692CrossRef
Zurück zum Zitat Lee CM, Kafle K, Park YB, Kim SH (2014) Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational Sum Frequency Generation (SFG) spectroscopy. Phys Chem Chem Phys 16:10844–10853CrossRef Lee CM, Kafle K, Park YB, Kim SH (2014) Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational Sum Frequency Generation (SFG) spectroscopy. Phys Chem Chem Phys 16:10844–10853CrossRef
Zurück zum Zitat Lee CM, Dazen K, Kafle K, Moore A, Johnson DK, Park S, Kim SH (2015a) Correlations of apparent cellulose crystallinity determined by XRD, NMR, IR, Raman, and SFG methods. In: Rojas OJ (ed) Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. Advances in polymer science. Springer International Publishing, Switzerland, pp 115–131 Lee CM, Dazen K, Kafle K, Moore A, Johnson DK, Park S, Kim SH (2015a) Correlations of apparent cellulose crystallinity determined by XRD, NMR, IR, Raman, and SFG methods. In: Rojas OJ (ed) Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. Advances in polymer science. Springer International Publishing, Switzerland, pp 115–131
Zurück zum Zitat Lee CM, Kafle K, Belias DW, Park YB, Glick RE, Haigler CH, Kim SH (2015b) Comprehensive analysis of cellulose content, crystallinity, and lateral packing in Gossypium hirsutum and Gossypium barbadense cotton fibers using sum frequency generation, infrared and Raman spectroscopy, and X-ray diffraction. Cellulose 22:971–989CrossRef Lee CM, Kafle K, Belias DW, Park YB, Glick RE, Haigler CH, Kim SH (2015b) Comprehensive analysis of cellulose content, crystallinity, and lateral packing in Gossypium hirsutum and Gossypium barbadense cotton fibers using sum frequency generation, infrared and Raman spectroscopy, and X-ray diffraction. Cellulose 22:971–989CrossRef
Zurück zum Zitat Li F et al (2015) Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33:524–530CrossRef Li F et al (2015) Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33:524–530CrossRef
Zurück zum Zitat Lutterotti L (2010) Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nucl Instrum Methods Phys Res, Sect B 268:334–340CrossRef Lutterotti L (2010) Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nucl Instrum Methods Phys Res, Sect B 268:334–340CrossRef
Zurück zum Zitat Moharir AV (1998) True-spiral angle in diploid and tetraploid native cotton fibers grown at different locations. J Appl Polym Sci 70:303–310CrossRef Moharir AV (1998) True-spiral angle in diploid and tetraploid native cotton fibers grown at different locations. J Appl Polym Sci 70:303–310CrossRef
Zurück zum Zitat Moharir AV, Van Langenhove L, Van Nimmen E, Louwarie J, Kiekens P (1999) Stability of X-ray cellulose crystallite orientation parameters in native cotton with change of location and year of growth. J Appl Polym Sci 72:269–276CrossRef Moharir AV, Van Langenhove L, Van Nimmen E, Louwarie J, Kiekens P (1999) Stability of X-ray cellulose crystallite orientation parameters in native cotton with change of location and year of growth. J Appl Polym Sci 72:269–276CrossRef
Zurück zum Zitat Montalvo JGJ (2005) Relationships between micronaire, fineness, and maturity. Part I. Fundamentals. J Cotton Sci 9:81–88 Montalvo JGJ (2005) Relationships between micronaire, fineness, and maturity. Part I. Fundamentals. J Cotton Sci 9:81–88
Zurück zum Zitat Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohyd Polym 135:1–9CrossRef Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohyd Polym 135:1–9CrossRef
Zurück zum Zitat Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRef Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRef
Zurück zum Zitat Park YB, Lee CM, Koo B-W, Park S, Cosgrove DJ, Kim SH (2013) Monitoring meso-scale ordering of cellulose in intact plant cell walls using sum frequency generation spectroscopy. Plant Physiol 163:907–913CrossRef Park YB, Lee CM, Koo B-W, Park S, Cosgrove DJ, Kim SH (2013) Monitoring meso-scale ordering of cellulose in intact plant cell walls using sum frequency generation spectroscopy. Plant Physiol 163:907–913CrossRef
Zurück zum Zitat Paudel D, Hequet E, Noureddine A (2013) Evaluation of cotton fiber maturity measurements. Ind Crops Prod 45:435–441CrossRef Paudel D, Hequet E, Noureddine A (2013) Evaluation of cotton fiber maturity measurements. Ind Crops Prod 45:435–441CrossRef
Zurück zum Zitat Percy R, Hendon B, Auld D (2015) Qualitative genetics and utilization of mutants. In: Fang DD, Percy RG (eds) Cotton. Agronomy monograph, vol 57, 2nd edn. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of Americ, Madison, pp 155–186 Percy R, Hendon B, Auld D (2015) Qualitative genetics and utilization of mutants. In: Fang DD, Percy RG (eds) Cotton. Agronomy monograph, vol 57, 2nd edn. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of Americ, Madison, pp 155–186
Zurück zum Zitat Rodgers J, Delhom C, Hinchliffe D, Kim HJ, Cui X (2013) A rapid measurement for cotton breeders of maturity and fineness from developing and mature fibers. Text Res J 83:1439–1451. doi:10.1177/0040517512471744 CrossRef Rodgers J, Delhom C, Hinchliffe D, Kim HJ, Cui X (2013) A rapid measurement for cotton breeders of maturity and fineness from developing and mature fibers. Text Res J 83:1439–1451. doi:10.​1177/​0040517512471744​ CrossRef
Zurück zum Zitat Rodgers J, Naylor GR, Cui X, Delhom C, Hinchliffe D (2015) Cottonscope fiber maturity, fineness, and ribbon width measurements with different sample sizes. Text Res J 85:897–911CrossRef Rodgers J, Naylor GR, Cui X, Delhom C, Hinchliffe D (2015) Cottonscope fiber maturity, fineness, and ribbon width measurements with different sample sizes. Text Res J 85:897–911CrossRef
Zurück zum Zitat Schwarz E, Hotte G (1935) Micro-determination of cotton fibre maturity in polarized light. Text Res J 5:370–376CrossRef Schwarz E, Hotte G (1935) Micro-determination of cotton fibre maturity in polarized light. Text Res J 5:370–376CrossRef
Zurück zum Zitat Seagull RW, Oliveri V, Murphy K, Binder A, Kothari S (2000) Cotton fiber growth and development 2. Changes in cell diameter and wall birefringence. J Cotton Sci 4:97–104 Seagull RW, Oliveri V, Murphy K, Binder A, Kothari S (2000) Cotton fiber growth and development 2. Changes in cell diameter and wall birefringence. J Cotton Sci 4:97–104
Zurück zum Zitat Shofner FM, Williams GF, Bragg KC, PE Sasser (1988) Advanced fiber information system: a new technology for evaluating cotton. Paper presented at the conference of the Textile Institute, Coventry, Dec 7–8, 1988 Shofner FM, Williams GF, Bragg KC, PE Sasser (1988) Advanced fiber information system: a new technology for evaluating cotton. Paper presented at the conference of the Textile Institute, Coventry, Dec 7–8, 1988
Zurück zum Zitat Snider JL, Oosterhuis DM (2015) Physiology. In: Fang DD, Percy RG (eds) Cotton. Agronomy monograph, vol 57, 2nd edn. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, pp 339–400 Snider JL, Oosterhuis DM (2015) Physiology. In: Fang DD, Percy RG (eds) Cotton. Agronomy monograph, vol 57, 2nd edn. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, pp 339–400
Zurück zum Zitat Thibodeaux DP, Evans JP (1986) Cotton fiber maturity by image analysis. Text Res J 56:130–139CrossRef Thibodeaux DP, Evans JP (1986) Cotton fiber maturity by image analysis. Text Res J 56:130–139CrossRef
Zurück zum Zitat Thibodeaux DP, Rajasekaran K (1999) Development of new reference standards for cotton fiber maturity. J Cotton Sci 3:188–193 Thibodeaux DP, Rajasekaran K (1999) Development of new reference standards for cotton fiber maturity. J Cotton Sci 3:188–193
Zurück zum Zitat Thyssen GN et al (2016) The immature fiber mutant phenotype of cotton (Gossypium hirsutum) is linked to a 22-bp frame-shift deletion in a mitochondria targeted pentatricopeptide repeat gene. G3: Genes| Genomes| Genetics 6:1627–1633CrossRef Thyssen GN et al (2016) The immature fiber mutant phenotype of cotton (Gossypium hirsutum) is linked to a 22-bp frame-shift deletion in a mitochondria targeted pentatricopeptide repeat gene. G3: Genes| Genomes| Genetics 6:1627–1633CrossRef
Zurück zum Zitat Updegraff DM (1969) Semimicro determination of cellulose in biological materials. Anal Biochem 32:420–424CrossRef Updegraff DM (1969) Semimicro determination of cellulose in biological materials. Anal Biochem 32:420–424CrossRef
Zurück zum Zitat Wakelyn PJ et al (2010) Cotton fiber chemistry and technology, vol 17. CRC Press, New York Wakelyn PJ et al (2010) Cotton fiber chemistry and technology, vol 17. CRC Press, New York
Zurück zum Zitat Wang C, Zhang T, Guo W (2013) The im mutant gene negatively affects many aspects of fiber quality traits and lint percentage in cotton. Crop Sci 53:27–37CrossRef Wang C, Zhang T, Guo W (2013) The im mutant gene negatively affects many aspects of fiber quality traits and lint percentage in cotton. Crop Sci 53:27–37CrossRef
Zurück zum Zitat Wang C, Lv Y, Xu W, Zhang T, Guo W (2014) Aberrant phenotype and transcriptome expression during fiber cell wall thickening caused by the mutation of the Im gene in immature fiber (im) mutant in Gossypium hirsutum L. BMC Genom 15:94CrossRef Wang C, Lv Y, Xu W, Zhang T, Guo W (2014) Aberrant phenotype and transcriptome expression during fiber cell wall thickening caused by the mutation of the Im gene in immature fiber (im) mutant in Gossypium hirsutum L. BMC Genom 15:94CrossRef
Zurück zum Zitat Xu B, Huang Y (2004) Image analysis for cotton fibers part II: cross-sectional measurements. Text Res J 74:409–416CrossRef Xu B, Huang Y (2004) Image analysis for cotton fibers part II: cross-sectional measurements. Text Res J 74:409–416CrossRef
Zurück zum Zitat Zhang T et al (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33:531–537CrossRef Zhang T et al (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33:531–537CrossRef
Metadaten
Titel
Comparative physical and chemical analyses of cotton fibers from two near isogenic upland lines differing in fiber wall thickness
verfasst von
Hee Jin Kim
Christopher M. Lee
Kevin Dazen
Christopher D. Delhom
Yongliang Liu
James E. Rodgers
Alfred D. French
Seong H. Kim
Publikationsdatum
07.04.2017
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 6/2017
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-017-1282-1

Weitere Artikel der Ausgabe 6/2017

Cellulose 6/2017 Zur Ausgabe