Skip to main content
Erschienen in: Cellulose 16/2019

19.08.2019 | Original Research

Preparation and thermostability of cellulose nanocrystals and nanofibrils from two sources of biomass: rice straw and poplar wood

verfasst von: Guomin Zhao, Jun Du, Weimin Chen, Mingzhu Pan, Dengyu Chen

Erschienen in: Cellulose | Ausgabe 16/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Two types of nanocellulose (cellulose nanocrystals—CNCs and cellulose nanofibrils—CNFs) were isolated from two biomass resources. The morphology, crystallinity and thermal stability of the nanocelluloses were systematically compared in this paper. CNCs derived from rice straw (CNC-Rs) and poplar wood (CNC-Ps) by sulfuric acid hydrolysis had short rod-shaped structures and average diameters of 9.1 nm for CNC-Rs and 11.4 nm for CNC-Ps. CNFs derived from rice straw (CNF-Rs) and poplar wood (CNF-Ps) by grinding had web-network structures and average diameters of 13.3 nm for CNF-Rs and 18.5 nm for CNF-Ps. After freeze-drying, the CNCs and CNFs retained their nano structures. CNFs and CNC-Ps consisted of the typically pure cellulose I, while CNC-Rs consisted of cellulose I and II. The CrI of the nanocellulose followed the order of CNC-Ps (72.9%) > CNC-Rs (68.0%) > CNF-Ps (56.4%) > CNF-Rs (54.4%). The thermal stability of the nanocellulose was correlated with their source biomass materials and preparation method, which led to the differences in their dimensions, crystallinity, and sulfate groups. Nanocellulose isolated from poplar wood showed the slightly higher thermal stability than that of nanocellulose from rice straw. CNFs exhibited the higher thermal stability than that of CNCs. The apparent activation energy (E) was calculated to evaluate the degradation process. The nanocellulose had E of 85.17–101.98 kJ/mol for CNCs and 94.92–108.76 kJ/mol for CNFs.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abe K (2019) Novel fabrication of high-modulus cellulose-based films by nanofibrillation under alkaline conditions. Carbohydr Polym 205:488–491PubMed Abe K (2019) Novel fabrication of high-modulus cellulose-based films by nanofibrillation under alkaline conditions. Carbohydr Polym 205:488–491PubMed
Zurück zum Zitat Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16:1017–1023 Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16:1017–1023
Zurück zum Zitat Abraham E, Deepa B, Pothen LA, Cintil J, Thomas S, John MJ, Anandjiwala R, Narine SS (2013) Environmental friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohydr Polym 92:1477–1483PubMed Abraham E, Deepa B, Pothen LA, Cintil J, Thomas S, John MJ, Anandjiwala R, Narine SS (2013) Environmental friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohydr Polym 92:1477–1483PubMed
Zurück zum Zitat Anderson SR, Esposito D, Gillette W, Zhu JY, Baxa U, McNeil SE (2014) Enzymatic preparation of nanocrystalline and microcrystalline cellulose. TAPPI J 13(5):35–42 Anderson SR, Esposito D, Gillette W, Zhu JY, Baxa U, McNeil SE (2014) Enzymatic preparation of nanocrystalline and microcrystalline cellulose. TAPPI J 13(5):35–42
Zurück zum Zitat Barud HS, Ribeiro CA, Capela JMV, Crespi MS, Ribeiro SJL, Messadeq Y (2011) Kinetic parameters for thermal decomposition of microcrystalline, vegetal, and bacterial cellulose. J Therm Anal Calorim 105:421–426 Barud HS, Ribeiro CA, Capela JMV, Crespi MS, Ribeiro SJL, Messadeq Y (2011) Kinetic parameters for thermal decomposition of microcrystalline, vegetal, and bacterial cellulose. J Therm Anal Calorim 105:421–426
Zurück zum Zitat Battista OA (1950) Hydrolysis and crystallization of cellulose. Ind Eng Chem 423:502–507 Battista OA (1950) Hydrolysis and crystallization of cellulose. Ind Eng Chem 423:502–507
Zurück zum Zitat Ben Azouz K, Ramires EC, Van den Fonteyne W, El Kissi N, Dufresne A (2012) Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Lett 1(1):236–240PubMed Ben Azouz K, Ramires EC, Van den Fonteyne W, El Kissi N, Dufresne A (2012) Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Lett 1(1):236–240PubMed
Zurück zum Zitat Boluk Y, Danumah C (2014) Analysis of cellulose nanocrystal rod lengths by dynamic light scattering and electron microscopy. J Nanopart Res 16(1):2174–2180 Boluk Y, Danumah C (2014) Analysis of cellulose nanocrystal rod lengths by dynamic light scattering and electron microscopy. J Nanopart Res 16(1):2174–2180
Zurück zum Zitat Cabrales L, Abidi N (2010) On the thermal degradation of cellulose in cotton fibers. J Therm Anal Calorim 102:485–491 Cabrales L, Abidi N (2010) On the thermal degradation of cellulose in cotton fibers. J Therm Anal Calorim 102:485–491
Zurück zum Zitat Cao Y, Wu J, Meng T, Zhang J, He J, Li H, Zhang Y (2007) Acetone-soluble cellulose acetates prepared by one-step homogeneous acetylation of cornhusk cellulose in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Carbohydr Polym 69(4):665–672 Cao Y, Wu J, Meng T, Zhang J, He J, Li H, Zhang Y (2007) Acetone-soluble cellulose acetates prepared by one-step homogeneous acetylation of cornhusk cellulose in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Carbohydr Polym 69(4):665–672
Zurück zum Zitat Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107 Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107
Zurück zum Zitat Chen WS, Yu HP, Liu YX, Chen P, Zhang MX, Hai YF (2011a) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83(4):1804–1811 Chen WS, Yu HP, Liu YX, Chen P, Zhang MX, Hai YF (2011a) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83(4):1804–1811
Zurück zum Zitat Chen W, Yu H, Liu Y (2011b) Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohydr Polym 86(2):453–461 Chen W, Yu H, Liu Y (2011b) Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohydr Polym 86(2):453–461
Zurück zum Zitat Chirayil CJ, Joy J, Mathew L, Mozetic M, Koetz J, Thomas S (2014) Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Ind Crop Prod 59:27–34 Chirayil CJ, Joy J, Mathew L, Mozetic M, Koetz J, Thomas S (2014) Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Ind Crop Prod 59:27–34
Zurück zum Zitat Deepa B, Abraham E, Cordeiro N, Mozetic M, Mathew AP, Oksman K, Faria M, Pothan LA (2015) Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 22:1075–1090 Deepa B, Abraham E, Cordeiro N, Mozetic M, Mathew AP, Oksman K, Faria M, Pothan LA (2015) Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 22:1075–1090
Zurück zum Zitat Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227 Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227
Zurück zum Zitat Dufresne A (2019) Nanocellulose processing properties and potential applications. Curr For Rep 5(2):76–89 Dufresne A (2019) Nanocellulose processing properties and potential applications. Curr For Rep 5(2):76–89
Zurück zum Zitat Ďurkovič J, Kaňuchová A, Kačík F, Mamoňová M, Lengyelová A (2013) Wood ontogeny during the first year of hybrid poplar development. Biol Plant 57(3):591–596 Ďurkovič J, Kaňuchová A, Kačík F, Mamoňová M, Lengyelová A (2013) Wood ontogeny during the first year of hybrid poplar development. Biol Plant 57(3):591–596
Zurück zum Zitat El Seoud OA, Marson GA, Ciacco GT, Frollini E (2000) An efficient, one-pot acylation of cellulose under homogeneous reaction conditions. Macromol Chem Phys 201(8):882–889 El Seoud OA, Marson GA, Ciacco GT, Frollini E (2000) An efficient, one-pot acylation of cellulose under homogeneous reaction conditions. Macromol Chem Phys 201(8):882–889
Zurück zum Zitat Ferrer A, Filpponen I, Rodríguez A, Laine J, Rojas OJ (2012) Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Bioresour Technol 125:249–255PubMed Ferrer A, Filpponen I, Rodríguez A, Laine J, Rojas OJ (2012) Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Bioresour Technol 125:249–255PubMed
Zurück zum Zitat French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896 French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896
Zurück zum Zitat French AD (2019) The quintessential sustainable resource: cellulose, and the journal named for it. Cellulose 26(1):1–3 French AD (2019) The quintessential sustainable resource: cellulose, and the journal named for it. Cellulose 26(1):1–3
Zurück zum Zitat French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the segal crystallinity index. Cellulose 20(1):583–588 French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the segal crystallinity index. Cellulose 20(1):583–588
Zurück zum Zitat Gjønnea J, Norman N (1960) X-ray investigations on cellulose II and mixtures of cellulose I and II. 1. A method for characterizing and determining the relative contents of the two modifications. Acta Chem Scand 14:683–688 Gjønnea J, Norman N (1960) X-ray investigations on cellulose II and mixtures of cellulose I and II. 1. A method for characterizing and determining the relative contents of the two modifications. Acta Chem Scand 14:683–688
Zurück zum Zitat Gronli MG, Varhegyi G, Di Blasi C (2002) Thermogravimetric analysis and devolatilization kinetics of wood. Ind Eng Chem Res 41(17):4201–4208 Gronli MG, Varhegyi G, Di Blasi C (2002) Thermogravimetric analysis and devolatilization kinetics of wood. Ind Eng Chem Res 41(17):4201–4208
Zurück zum Zitat Han JQ, Zhou CG, Wu YQ, Liu FY, Wu QL (2013) Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromolecules 14:1529–1540PubMed Han JQ, Zhou CG, Wu YQ, Liu FY, Wu QL (2013) Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromolecules 14:1529–1540PubMed
Zurück zum Zitat Haworth S, Roberts JG, Sagar BF (1969) Quantitative determination of mixtures of alkyl ethers of d-glucose. Carbohydr Res 10(1):1–12 Haworth S, Roberts JG, Sagar BF (1969) Quantitative determination of mixtures of alkyl ethers of d-glucose. Carbohydr Res 10(1):1–12
Zurück zum Zitat Ibbett RN, Domvoglou D, Phillips DAS (2008) The hydrolysis and recrystallisation of lyocell and comparative cellulosic fibres in solutions of mineral acid. Cellulose 15(2):241–254 Ibbett RN, Domvoglou D, Phillips DAS (2008) The hydrolysis and recrystallisation of lyocell and comparative cellulosic fibres in solutions of mineral acid. Cellulose 15(2):241–254
Zurück zum Zitat Iwamoto S, Kai WH, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10(9):2571–2576PubMed Iwamoto S, Kai WH, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10(9):2571–2576PubMed
Zurück zum Zitat Jiang F, Hsieh YL (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95(1):32–40PubMed Jiang F, Hsieh YL (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95(1):32–40PubMed
Zurück zum Zitat Jiang F, Hsieh YL (2015) Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydr Polym 122:60–68PubMed Jiang F, Hsieh YL (2015) Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydr Polym 122:60–68PubMed
Zurück zum Zitat Jiang F, Kondo T, Hsieh YL (2016) Rice straw cellulose nanofibrils via aqueous counter collision and differential centrifugation and their self-assembled structures. ACS Sustain Chem Eng 4(3):1697–1706 Jiang F, Kondo T, Hsieh YL (2016) Rice straw cellulose nanofibrils via aqueous counter collision and differential centrifugation and their self-assembled structures. ACS Sustain Chem Eng 4(3):1697–1706
Zurück zum Zitat Jun D, Guomin Z, Mingzhu P, Leilei Z, Dagang L, Rui Z (2017) Crystallization and mechanical properties of reinforced PHBV composites using melt compounding: effect of CNCs and CNFs. Carbohydr Polym 168:255–262PubMed Jun D, Guomin Z, Mingzhu P, Leilei Z, Dagang L, Rui Z (2017) Crystallization and mechanical properties of reinforced PHBV composites using melt compounding: effect of CNCs and CNFs. Carbohydr Polym 168:255–262PubMed
Zurück zum Zitat Kim UJ, Eom SH, Wada M (2010) Thermal decomposition of native cellulose: influence on crystallite size. Polym Degrad Stab 95:778–781 Kim UJ, Eom SH, Wada M (2010) Thermal decomposition of native cellulose: influence on crystallite size. Polym Degrad Stab 95:778–781
Zurück zum Zitat Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393 Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393
Zurück zum Zitat Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 angstrom resolution. Biomacromolecules 2(2):410–416PubMed Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 angstrom resolution. Biomacromolecules 2(2):410–416PubMed
Zurück zum Zitat Lee J, Deng YL (2011) The morphology and mechanical properties of layer structured cellulose microfibril foams from ice-templating methods. Soft Matter 7:6034–6040 Lee J, Deng YL (2011) The morphology and mechanical properties of layer structured cellulose microfibril foams from ice-templating methods. Soft Matter 7:6034–6040
Zurück zum Zitat Li Q, Renneckar S (2011) Supramolecular structure characterization of molecularly thin cellulose I nanoparticles. Biomacromolecules 12:650–659PubMed Li Q, Renneckar S (2011) Supramolecular structure characterization of molecularly thin cellulose I nanoparticles. Biomacromolecules 12:650–659PubMed
Zurück zum Zitat Li J, Wei X, Wang Q, Chen J, Chang G, Kong L (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90:1609–1613PubMed Li J, Wei X, Wang Q, Chen J, Chang G, Kong L (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90:1609–1613PubMed
Zurück zum Zitat Ling Z, Wang T, Makarem M, Cintrón MS, Cheng HN, Kang X, Bacher M, Potthast A, Rosenau T, King H, Delhom CD, Nam S, Edwards JV, Kim SH, Xu F, French AD (2019) Effects of ball milling on the structure of cotton cellulose. Cellulose 26:305–328 Ling Z, Wang T, Makarem M, Cintrón MS, Cheng HN, Kang X, Bacher M, Potthast A, Rosenau T, King H, Delhom CD, Nam S, Edwards JV, Kim SH, Xu F, French AD (2019) Effects of ball milling on the structure of cotton cellulose. Cellulose 26:305–328
Zurück zum Zitat Lu P, Hsieh YL (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87(1):564–573PubMed Lu P, Hsieh YL (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87(1):564–573PubMed
Zurück zum Zitat Malek J (1992) The kinetic analysis of non-isothermal data. Thermochim Acta 200(92):257–269 Malek J (1992) The kinetic analysis of non-isothermal data. Thermochim Acta 200(92):257–269
Zurück zum Zitat Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86:1291–1299 Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86:1291–1299
Zurück zum Zitat Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci Polym Phys 52(12):791–806 Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci Polym Phys 52(12):791–806
Zurück zum Zitat Meng C, Cao GP, Yan YZ, Zhao EY, Hou LY, Shi HY (2017) Synthesis of cellulose acetate propionate with controllable contents and distributions of acetyl and propionyl in the C2, C3 and C6 positions. React Kinet Mech Catal 122(2):1031–1047 Meng C, Cao GP, Yan YZ, Zhao EY, Hou LY, Shi HY (2017) Synthesis of cellulose acetate propionate with controllable contents and distributions of acetyl and propionyl in the C2, C3 and C6 positions. React Kinet Mech Catal 122(2):1031–1047
Zurück zum Zitat Montanari S, Rountani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38:1665–1671 Montanari S, Rountani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38:1665–1671
Zurück zum Zitat Monteiro SN, Calado V, Rodriguez RJS, Margem FM (2012) Thermogravimetric stability of polymer composites reinforced with less common lignocellulosic fibers—an overview. J Mater Res Technol 1(2):117–126 Monteiro SN, Calado V, Rodriguez RJS, Margem FM (2012) Thermogravimetric stability of polymer composites reinforced with less common lignocellulosic fibers—an overview. J Mater Res Technol 1(2):117–126
Zurück zum Zitat Naduparambath S, Jinitha TV, Shaniba V, Sreejith MP, Aparna KB, Purushothaman E (2018) Isolation and characterisation of cellulose nanocrystals from sago seed shells. Carbohydr Polym 180:13–20PubMed Naduparambath S, Jinitha TV, Shaniba V, Sreejith MP, Aparna KB, Purushothaman E (2018) Isolation and characterisation of cellulose nanocrystals from sago seed shells. Carbohydr Polym 180:13–20PubMed
Zurück zum Zitat Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr Polym 135:1–9PubMed Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr Polym 135:1–9PubMed
Zurück zum Zitat Nasri-Nasrabadi B, Behzad T, Bagheri R (2014) Extraction and characterization of rice straw cellulose nanofibers by an optimized chemomechanical method. J Appl Polym Sci 131(7):2113–2124 Nasri-Nasrabadi B, Behzad T, Bagheri R (2014) Extraction and characterization of rice straw cellulose nanofibers by an optimized chemomechanical method. J Appl Polym Sci 131(7):2113–2124
Zurück zum Zitat Neto WPF, Putaux JL, Mariano M, Ogawa Y, Otaguro H, Pasquinia D, Dufresne A (2016) Comprehensive morphological and structural investigation of cellulose I and II nanocrystals prepared by sulphuric acid hydrolysis. RSC Adv 6:76017–76027 Neto WPF, Putaux JL, Mariano M, Ogawa Y, Otaguro H, Pasquinia D, Dufresne A (2016) Comprehensive morphological and structural investigation of cellulose I and II nanocrystals prepared by sulphuric acid hydrolysis. RSC Adv 6:76017–76027
Zurück zum Zitat Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37(20):7683–7687 Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37(20):7683–7687
Zurück zum Zitat Okano T, Sarko A (1985) Mercerization of cellulose. II. Alkali–cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30:325–332 Okano T, Sarko A (1985) Mercerization of cellulose. II. Alkali–cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30:325–332
Zurück zum Zitat Oun AA, Rhim JW (2018) Isolation of oxidized nanocellulose from rice straw using the ammonium persulfate method. Cellulose 25(4):2143–2149 Oun AA, Rhim JW (2018) Isolation of oxidized nanocellulose from rice straw using the ammonium persulfate method. Cellulose 25(4):2143–2149
Zurück zum Zitat Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941PubMed Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941PubMed
Zurück zum Zitat Pan MZ, Zhou XY, Chen MZ (2013) Cellulose nanowhiskers isolation and properties from acid hydrolysis combined with high pressure homogenization. BioResources 8(1):933–943 Pan MZ, Zhou XY, Chen MZ (2013) Cellulose nanowhiskers isolation and properties from acid hydrolysis combined with high pressure homogenization. BioResources 8(1):933–943
Zurück zum Zitat Pan MZ, Gan XH, Mei CT, Liang YF (2017) Structural analysis and transformation of biosilica during lignocellulose fractionation of rice straw. J Mol Struct 1127:575–582 Pan MZ, Gan XH, Mei CT, Liang YF (2017) Structural analysis and transformation of biosilica during lignocellulose fractionation of rice straw. J Mol Struct 1127:575–582
Zurück zum Zitat Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):10PubMedPubMedCentral Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):10PubMedPubMedCentral
Zurück zum Zitat Peng Y, Gardner DJ, Han Y (2012) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19(1):91–102 Peng Y, Gardner DJ, Han Y (2012) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19(1):91–102
Zurück zum Zitat Peng Y, Gardner DJ, Han Y, Kiziltas A, Cai Z, Tshabalala MA (2013) Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20(5):2379–2392 Peng Y, Gardner DJ, Han Y, Kiziltas A, Cai Z, Tshabalala MA (2013) Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20(5):2379–2392
Zurück zum Zitat Quievy N, Jacquet N, Sclavons M, Deroanne C, Paquot M, Devaux J (2010) Influence of homogenization and drying on the thermal stability of microfibrillated cellulose. Polym Degrad Stab 95:306–314 Quievy N, Jacquet N, Sclavons M, Deroanne C, Paquot M, Devaux J (2010) Influence of homogenization and drying on the thermal stability of microfibrillated cellulose. Polym Degrad Stab 95:306–314
Zurück zum Zitat Reiniati I, Osman NB, Mc Donald AG, Laborie M (2015) Linear viscoelasticity of hot-pressed hybrid poplar relates to densification and to the in situ molecular parameters of cellulose. Ann For Sci 72(6):693–703 Reiniati I, Osman NB, Mc Donald AG, Laborie M (2015) Linear viscoelasticity of hot-pressed hybrid poplar relates to densification and to the in situ molecular parameters of cellulose. Ann For Sci 72(6):693–703
Zurück zum Zitat Revol JF (1982) On the cross-sectional shape of cellulose crystallites in Valonia ventricosa. Carbohydr Polym 2(2):123–134 Revol JF (1982) On the cross-sectional shape of cellulose crystallites in Valonia ventricosa. Carbohydr Polym 2(2):123–134
Zurück zum Zitat Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5(5):1671–1677PubMed Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5(5):1671–1677PubMed
Zurück zum Zitat Sawada D, Kalluri UC, Neill HO, Urban V, Langan P, Davison B, Pingali SV (2018) Tension wood structure and morphology conducive for better enzymatic digestion. Biotechnol Biofuels 11:44PubMedPubMedCentral Sawada D, Kalluri UC, Neill HO, Urban V, Langan P, Davison B, Pingali SV (2018) Tension wood structure and morphology conducive for better enzymatic digestion. Biotechnol Biofuels 11:44PubMedPubMedCentral
Zurück zum Zitat Sebe G, Ham-Pichavant F, Ibarboure E, Koffi ALC, Tingaut P (2012) Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromolecules 13:570–578PubMed Sebe G, Ham-Pichavant F, Ibarboure E, Koffi ALC, Tingaut P (2012) Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromolecules 13:570–578PubMed
Zurück zum Zitat Shamskara KR, Heidarib H, Rashidi A (2016) Preparation and evaluation of nanocrystalline cellulose aerogels from raw cotton and cotton stalk. Ind Crop Prod 93:203–211 Shamskara KR, Heidarib H, Rashidi A (2016) Preparation and evaluation of nanocrystalline cellulose aerogels from raw cotton and cotton stalk. Ind Crop Prod 93:203–211
Zurück zum Zitat Shi ZQ, Liu Y, Xu HY, Yang QL, Xiong CX, Kuga S, Matsumoto Y (2018) Facile dissolution of wood pulp in aqueous NaOH/urea solution by ball milling pretreatment. Ind Crop Prod 118:48–52 Shi ZQ, Liu Y, Xu HY, Yang QL, Xiong CX, Kuga S, Matsumoto Y (2018) Facile dissolution of wood pulp in aqueous NaOH/urea solution by ball milling pretreatment. Ind Crop Prod 118:48–52
Zurück zum Zitat Silverio HA, Neto WPF, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crop Prod 44:427–436 Silverio HA, Neto WPF, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crop Prod 44:427–436
Zurück zum Zitat Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765 Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765
Zurück zum Zitat Tang Y, Yang S, Zhang N, Zhang J (2014) Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulphuric acid hydrolysis. Cellulose 21(1):335–346 Tang Y, Yang S, Zhang N, Zhang J (2014) Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulphuric acid hydrolysis. Cellulose 21(1):335–346
Zurück zum Zitat Ten E, Turtle J, Bahr D, Jiang L, Wolcott M (2010) Thermal and mechanical properties of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Polymer 51(12):2652–2660 Ten E, Turtle J, Bahr D, Jiang L, Wolcott M (2010) Thermal and mechanical properties of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Polymer 51(12):2652–2660
Zurück zum Zitat Tong TP, Ma ZQ, Chen DY, Zhang QS (2014) Pyrolysis characteristics and kinetics study of bamboo holo-cellulose using TG–FTIR. J Zhejiang A&F Univ 31(4):495–501 Tong TP, Ma ZQ, Chen DY, Zhang QS (2014) Pyrolysis characteristics and kinetics study of bamboo holo-cellulose using TG–FTIR. J Zhejiang A&F Univ 31(4):495–501
Zurück zum Zitat Wang N, Ding EY, Cheng RS (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48(12):3486–3493 Wang N, Ding EY, Cheng RS (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48(12):3486–3493
Zurück zum Zitat Wen JL, Sun SL, Yuan TQ, Sun RC (2015) Structural elucidation of whole lignin from Eucalyptus based on preswelling and enzymatic hydrolysis. Green Chem 17:1589–1596 Wen JL, Sun SL, Yuan TQ, Sun RC (2015) Structural elucidation of whole lignin from Eucalyptus based on preswelling and enzymatic hydrolysis. Green Chem 17:1589–1596
Zurück zum Zitat Wu QL, Yao F, Xu XW, Mei CT, Zhou DG (2013) Thermal degradation of rice straw fibers: global kinetic modeling with isothermal thermogravimetric analysis. J Ind Eng Chem 19:670–676 Wu QL, Yao F, Xu XW, Mei CT, Zhou DG (2013) Thermal degradation of rice straw fibers: global kinetic modeling with isothermal thermogravimetric analysis. J Ind Eng Chem 19:670–676
Zurück zum Zitat Xie Q, Wang S, Chen X, Zhou YY, Fang HG, Li XL, Cheng S, Ding YS (2018) Thermal stability and crystallization behavior of cellulose nanocrystals and their poly(l-lactide) nanocomposites: effects of surface ionic group and poly(d-lactide) grafting. Cellulose 25(12):6847–6862 Xie Q, Wang S, Chen X, Zhou YY, Fang HG, Li XL, Cheng S, Ding YS (2018) Thermal stability and crystallization behavior of cellulose nanocrystals and their poly(l-lactide) nanocomposites: effects of surface ionic group and poly(d-lactide) grafting. Cellulose 25(12):6847–6862
Zurück zum Zitat Xing LD, Gu J, Zhang WW, Tu DG, Hu CS (2018) Cellulose I and II nanocrystals produced by sulfuric acid hydrolysis of Tetra pak cellulose I. Carbohydr Polym 192:184–192PubMed Xing LD, Gu J, Zhang WW, Tu DG, Hu CS (2018) Cellulose I and II nanocrystals produced by sulfuric acid hydrolysis of Tetra pak cellulose I. Carbohydr Polym 192:184–192PubMed
Zurück zum Zitat Xiong ZY, Qin YH, Ma JY, Yang L, Wu ZK, Wang TL, Wang WG, Wang CW (2017) Pretreatment of rice straw by ultrasound-assisted Fenton process. Bioresour Technol 227:408–411PubMed Xiong ZY, Qin YH, Ma JY, Yang L, Wu ZK, Wang TL, Wang WG, Wang CW (2017) Pretreatment of rice straw by ultrasound-assisted Fenton process. Bioresour Technol 227:408–411PubMed
Zurück zum Zitat Yao F, Wu Q, Lei Y, Guo W, Xu Y (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab 93(1):90–98 Yao F, Wu Q, Lei Y, Guo W, Xu Y (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab 93(1):90–98
Zurück zum Zitat Zhang YZ, Chen XL, Liu J, Gao PJ (1998) Size and arrangement of elementary fibrils in crystalline cellulose studied with scanning tunneling microscopy. J Vac Sci Technol B 15(4):502–1505 Zhang YZ, Chen XL, Liu J, Gao PJ (1998) Size and arrangement of elementary fibrils in crystalline cellulose studied with scanning tunneling microscopy. J Vac Sci Technol B 15(4):502–1505
Zurück zum Zitat Zhao J, Zhang W, Zhang X, Zhang X, Lu C, Deng Y (2013) Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization. Carbohydr Polym 97(2):695–702PubMed Zhao J, Zhang W, Zhang X, Zhang X, Lu C, Deng Y (2013) Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization. Carbohydr Polym 97(2):695–702PubMed
Zurück zum Zitat Zhao Y, Xu C, Xing C, Shi X, Matuana LM, Zhou H, Ma X (2015) Fabrication and characteristics of cellulose nanofibril films from coconut palm petiole prepared by different mechanical processing. Ind Crop Prod 65:96–101 Zhao Y, Xu C, Xing C, Shi X, Matuana LM, Zhou H, Ma X (2015) Fabrication and characteristics of cellulose nanofibril films from coconut palm petiole prepared by different mechanical processing. Ind Crop Prod 65:96–101
Zurück zum Zitat Zhou LM, Wang YP, Huang QW, Cai JQ (2006) Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis. Fuel Process Technol 87:963–969 Zhou LM, Wang YP, Huang QW, Cai JQ (2006) Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis. Fuel Process Technol 87:963–969
Metadaten
Titel
Preparation and thermostability of cellulose nanocrystals and nanofibrils from two sources of biomass: rice straw and poplar wood
verfasst von
Guomin Zhao
Jun Du
Weimin Chen
Mingzhu Pan
Dengyu Chen
Publikationsdatum
19.08.2019
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 16/2019
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02683-8

Weitere Artikel der Ausgabe 16/2019

Cellulose 16/2019 Zur Ausgabe