Skip to main content
Erschienen in: Cellulose 16/2019

24.08.2019 | Original Research

Electrically conductive polyacrylamide/carbon nanotube hydrogel: reinforcing effect from cellulose nanofibers

verfasst von: Chuchu Chen, Yiren Wang, Taotao Meng, Qijing Wu, Lu Fang, Di Zhao, Yiyi Zhang, Dagang Li

Erschienen in: Cellulose | Ausgabe 16/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The development of polymeric hydrogels with new functionalities is becoming an aspiration in various fields. Here we report a simple method to fabricate a conductive polyacrylamide (PAM)-based hydrogel by the incorporation of carbon nanorubes (CNTs). However, the major challenge for these hydrogels is CNT aggregation in PAM, which decreases both mechanical and electrical properties of the composite hydrogels. Inclusion of cellulose nanofibers (CNFs), is expected to disperse the CNTs well, thereby reinforcing the PAM hydrogels. Hence, by mixing the CNFs and CNTs in the AM hybrid solutions, a PAM/CNF/CNT composite hydrogel is prepared through in situ polymerization. Specifically, with incorporation of 1 wt% CNF and 1 wt% CNT into PAM, the PAM/CNF/CNT-1 hydrogel, with an electrical conductivity of 8.5 × 10−4 S/cm, shows a threefold higher fracture tensile strength than the pure PAM hydrogel. Given the improved mechanical properties and electrical conductivity, the use of CNF as a reinforcing agent for both PAM and CNT provide a versatile method to fabricate conductive hydrogels, and has potential to expand their application in the field of bio-medical engineering and electrical devices.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdul Rashid ES, Muhd Julkapli N, Yehye WA (2018) Nanocellulose reinforced as green agent in polymer matrix composites applications. Polym Adv Technol 29:1531–1546CrossRef Abdul Rashid ES, Muhd Julkapli N, Yehye WA (2018) Nanocellulose reinforced as green agent in polymer matrix composites applications. Polym Adv Technol 29:1531–1546CrossRef
Zurück zum Zitat Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromol 8:3276–3278CrossRef Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromol 8:3276–3278CrossRef
Zurück zum Zitat Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121CrossRefPubMed Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121CrossRefPubMed
Zurück zum Zitat Chen C, Li D, Abe K, Yano H (2018a) Formation of high strength double-network gels from cellulose nanofiber/polyacrylamide via NaOH gelation treatment. Cellulose 25(9):5089–5097CrossRef Chen C, Li D, Abe K, Yano H (2018a) Formation of high strength double-network gels from cellulose nanofiber/polyacrylamide via NaOH gelation treatment. Cellulose 25(9):5089–5097CrossRef
Zurück zum Zitat Chen W, Yu H, Lee SY, Wei T, Li J, Fan Z (2018b) Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 47:2837–2872CrossRefPubMed Chen W, Yu H, Lee SY, Wei T, Li J, Fan Z (2018b) Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 47:2837–2872CrossRefPubMed
Zurück zum Zitat Chen C, Li D, Abe K, Yano H (2019a) Insect cuticle-mimetic hydrogels with high mechanical properties achieved via the combination of chitin nanofiber and gelatin. J Agric Food Chem 67(19):5571–5578CrossRefPubMed Chen C, Li D, Abe K, Yano H (2019a) Insect cuticle-mimetic hydrogels with high mechanical properties achieved via the combination of chitin nanofiber and gelatin. J Agric Food Chem 67(19):5571–5578CrossRefPubMed
Zurück zum Zitat Chen C, Li D, Abe K, Yano H (2019b) Bioinspired hydrogels: quinone crosslinking reaction for chitin nanofibers with enhanced mechanical strength via surface deacetylation. Carbohyd Polym 207:411–417CrossRef Chen C, Li D, Abe K, Yano H (2019b) Bioinspired hydrogels: quinone crosslinking reaction for chitin nanofibers with enhanced mechanical strength via surface deacetylation. Carbohyd Polym 207:411–417CrossRef
Zurück zum Zitat De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631CrossRef De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631CrossRef
Zurück zum Zitat Deligkaris K, Tadele TS, Olthuis W, van den Berg A (2010) Hydrogel-based devices for biomedical applications. Sens Actuators B Chem 147:765–774CrossRef Deligkaris K, Tadele TS, Olthuis W, van den Berg A (2010) Hydrogel-based devices for biomedical applications. Sens Actuators B Chem 147:765–774CrossRef
Zurück zum Zitat Ding C, Cai C, Yin L, Wu Q, Pan M, Mei C (2019) Mechanically adaptive nanocomposites with cellulose nanocrystals: strain-field mapping with digital image correlation. Carbohyd Polym 211:11–21CrossRef Ding C, Cai C, Yin L, Wu Q, Pan M, Mei C (2019) Mechanically adaptive nanocomposites with cellulose nanocrystals: strain-field mapping with digital image correlation. Carbohyd Polym 211:11–21CrossRef
Zurück zum Zitat Duan G, Fang H, Huang C, Jiang S, Hou H (2018) Microstructures and mechanical properties of aligned electrospun carbon nanofibers from binary composites of polyacrylonitrile and polyamic acid. J Mater Sci 53(21):15096–15106CrossRef Duan G, Fang H, Huang C, Jiang S, Hou H (2018) Microstructures and mechanical properties of aligned electrospun carbon nanofibers from binary composites of polyacrylonitrile and polyamic acid. J Mater Sci 53(21):15096–15106CrossRef
Zurück zum Zitat Fei G, Wang Y, Wang H, Ma Y, Guo Q, Huang W, Yang D, Shao Y, Ni Y (2019) Fabrication of bacterial cellulose/polyaniline nanocomposite paper with excellent conductivity, strength, and flexibility. ACS Sustain Chem Eng 7:8215–8225CrossRef Fei G, Wang Y, Wang H, Ma Y, Guo Q, Huang W, Yang D, Shao Y, Ni Y (2019) Fabrication of bacterial cellulose/polyaniline nanocomposite paper with excellent conductivity, strength, and flexibility. ACS Sustain Chem Eng 7:8215–8225CrossRef
Zurück zum Zitat Fernandes RMF, Buzaglo M, Regev O, Furo I, Marques EF (2017) Mechanical agitation induces counterintuitive aggregation of pre-dispersed carbon nanotubes. J Colloid Interface Sci 493:398–404CrossRefPubMed Fernandes RMF, Buzaglo M, Regev O, Furo I, Marques EF (2017) Mechanical agitation induces counterintuitive aggregation of pre-dispersed carbon nanotubes. J Colloid Interface Sci 493:398–404CrossRefPubMed
Zurück zum Zitat Fu LH, Qi C, Ma MG, Wan P (2019) Multifunctional cellulose-based hydrogels for biomedical applications. J Mater Chem B 7:1541–1562CrossRef Fu LH, Qi C, Ma MG, Wan P (2019) Multifunctional cellulose-based hydrogels for biomedical applications. J Mater Chem B 7:1541–1562CrossRef
Zurück zum Zitat Gao S, Tang G, Hua D, Xiong R, Han J, Jiang S et al (2019) Stimuli-responsive bio-based polymeric systems and their applications. J Mater Chem B 7:709–729CrossRef Gao S, Tang G, Hua D, Xiong R, Han J, Jiang S et al (2019) Stimuli-responsive bio-based polymeric systems and their applications. J Mater Chem B 7:709–729CrossRef
Zurück zum Zitat Hamedi MM, Hajian A, Fall AB, HaKansson K, Salajkova M, Lundell F et al (2014) Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. ACS Nano 8(3):2467–2476CrossRefPubMed Hamedi MM, Hajian A, Fall AB, HaKansson K, Salajkova M, Lundell F et al (2014) Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. ACS Nano 8(3):2467–2476CrossRefPubMed
Zurück zum Zitat Hosseini H, Kokabi M, Mousavi SM (2018) Conductive bacterial cellulose/multiwall carbon nanotubes nanocomposite aerogel as a potentially flexible lightweight strain sensor. Carbohyd Polym 201:228–235CrossRef Hosseini H, Kokabi M, Mousavi SM (2018) Conductive bacterial cellulose/multiwall carbon nanotubes nanocomposite aerogel as a potentially flexible lightweight strain sensor. Carbohyd Polym 201:228–235CrossRef
Zurück zum Zitat Koga H, Saito T, Kitaoka T, Nogi M, Suganuma K, Isogai A (2013) Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. Biomacromol 14:1160–1165CrossRef Koga H, Saito T, Kitaoka T, Nogi M, Suganuma K, Isogai A (2013) Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. Biomacromol 14:1160–1165CrossRef
Zurück zum Zitat Kumar A, Rao KM, Han SS (2018) Mechanically viscoelastic nanoreinforced hybrid hydrogels composed of polyacrylamide, sodium carboxymethylcellulose, graphene oxide, and cellulose nanocrystals. Carbohyd Polym 193:228–238CrossRef Kumar A, Rao KM, Han SS (2018) Mechanically viscoelastic nanoreinforced hybrid hydrogels composed of polyacrylamide, sodium carboxymethylcellulose, graphene oxide, and cellulose nanocrystals. Carbohyd Polym 193:228–238CrossRef
Zurück zum Zitat Li M-C, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustain Chem Eng 3:821–832CrossRef Li M-C, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustain Chem Eng 3:821–832CrossRef
Zurück zum Zitat Li M-C, Wu Q, Song K, Cheng HN, Suzuki S, Lei T (2016) Chitin nanofibers as reinforcing and antimicrobial agents in carboxymethyl cellulose films: influence of partial deacetylation. ACS Sustain Chem Eng 4:4385–4395CrossRef Li M-C, Wu Q, Song K, Cheng HN, Suzuki S, Lei T (2016) Chitin nanofibers as reinforcing and antimicrobial agents in carboxymethyl cellulose films: influence of partial deacetylation. ACS Sustain Chem Eng 4:4385–4395CrossRef
Zurück zum Zitat Liu Y, Kumar S (2014) Polymer/carbon nanotube nano composite fibers—a review. ACS Appl Mater Interfaces 6:6069–6087CrossRefPubMed Liu Y, Kumar S (2014) Polymer/carbon nanotube nano composite fibers—a review. ACS Appl Mater Interfaces 6:6069–6087CrossRefPubMed
Zurück zum Zitat Liu YJ, Cao WT, Ma MG, Wan P (2017) Ultrasensitive wearable soft strain sensors of conductive, self-healing, and elastic hydrogels with synergistic “soft and hard” hybrid networks. ACS Appl Mater Interfaces 9:25559–25570CrossRefPubMed Liu YJ, Cao WT, Ma MG, Wan P (2017) Ultrasensitive wearable soft strain sensors of conductive, self-healing, and elastic hydrogels with synergistic “soft and hard” hybrid networks. ACS Appl Mater Interfaces 9:25559–25570CrossRefPubMed
Zurück zum Zitat Liu S, Stupp SI, Olvera de la Cruz M (2018) Anisotropic contraction of fiber-reinforced hydrogels. Soft Matter 14:7731–7739CrossRefPubMed Liu S, Stupp SI, Olvera de la Cruz M (2018) Anisotropic contraction of fiber-reinforced hydrogels. Soft Matter 14:7731–7739CrossRefPubMed
Zurück zum Zitat Pramanik C, Nepal D, Nathanson M, Gissinger JR, Garley A, Berry RJ, Davijani A, Kumar S, Heinz H (2018) Molecular engineering of interphases in polymer/carbon nanotube composites to reach the limits of mechanical performance. Compos Sci Technol 166:86–94CrossRef Pramanik C, Nepal D, Nathanson M, Gissinger JR, Garley A, Berry RJ, Davijani A, Kumar S, Heinz H (2018) Molecular engineering of interphases in polymer/carbon nanotube composites to reach the limits of mechanical performance. Compos Sci Technol 166:86–94CrossRef
Zurück zum Zitat Tang Y, He Z, Mosseler JA, Ni Y (2014) Production of highly electro-conductive cellulosic paper via surface coating of carbon nanotube/graphene oxide nanocomposites using nanocrystalline cellulose as a binder. Cellulose 21:4569–4581CrossRef Tang Y, He Z, Mosseler JA, Ni Y (2014) Production of highly electro-conductive cellulosic paper via surface coating of carbon nanotube/graphene oxide nanocomposites using nanocrystalline cellulose as a binder. Cellulose 21:4569–4581CrossRef
Zurück zum Zitat Xu ZY, Li JY (2018) Enhanced swelling, mechanical and thermal properties of cellulose nanofibrils (CNF)/poly(vinyl alcohol) (PVA) hydrogels with controlled porous structure. J Nanosci Nanotechnol 18:668–675CrossRefPubMed Xu ZY, Li JY (2018) Enhanced swelling, mechanical and thermal properties of cellulose nanofibrils (CNF)/poly(vinyl alcohol) (PVA) hydrogels with controlled porous structure. J Nanosci Nanotechnol 18:668–675CrossRefPubMed
Zurück zum Zitat Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009CrossRefPubMed Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009CrossRefPubMed
Zurück zum Zitat Xu S, Yu W, Jing M, Huang R, Zhang Q, Fu Q (2017) Largely enhanced stretching sensitivity of polyurethane/carbon nanotube nanocomposites via incorporation of cellulose nanofiber. J Phys Chem C 121:2108–2117CrossRef Xu S, Yu W, Jing M, Huang R, Zhang Q, Fu Q (2017) Largely enhanced stretching sensitivity of polyurethane/carbon nanotube nanocomposites via incorporation of cellulose nanofiber. J Phys Chem C 121:2108–2117CrossRef
Zurück zum Zitat Xu CY, Shi XM, Guo L, Wang X, Wang XY, Li JY (2018a) Optimization of graphene conductive ink with 73 wt% graphene contents. J Nanosci Nanotechnol 18(6):4014–4021CrossRefPubMed Xu CY, Shi XM, Guo L, Wang X, Wang XY, Li JY (2018a) Optimization of graphene conductive ink with 73 wt% graphene contents. J Nanosci Nanotechnol 18(6):4014–4021CrossRefPubMed
Zurück zum Zitat Xu Z, Jiang X, Tan S, Wu W, Shi J, Zhou H, Chen P (2018b) Preparation and characterisation of CNF/MWCNT carbon aerogel as efficient adsorbents. IET Nanobiotechnol 12:500–504CrossRefPubMed Xu Z, Jiang X, Tan S, Wu W, Shi J, Zhou H, Chen P (2018b) Preparation and characterisation of CNF/MWCNT carbon aerogel as efficient adsorbents. IET Nanobiotechnol 12:500–504CrossRefPubMed
Zurück zum Zitat Yang J, Han C-R, Zhang X-M, Xu F, Sun R-C (2014) Cellulose nanocrystals mechanical reinforcement in composite hydrogels with multiple cross-links: correlations between dissipation properties and deformation mechanisms. Macromolecules 47:4077–4086CrossRef Yang J, Han C-R, Zhang X-M, Xu F, Sun R-C (2014) Cellulose nanocrystals mechanical reinforcement in composite hydrogels with multiple cross-links: correlations between dissipation properties and deformation mechanisms. Macromolecules 47:4077–4086CrossRef
Zurück zum Zitat Yang J, Xie H, Chen H, Shi Z, Wu T, Yang Q, Xiong C (2018) Cellulose nanofibril/boron nitride nanosheet composites with enhanced energy density and thermal stability by interfibrillar cross-linking through Ca2+. J Mater Chem A 6:1403–1411CrossRef Yang J, Xie H, Chen H, Shi Z, Wu T, Yang Q, Xiong C (2018) Cellulose nanofibril/boron nitride nanosheet composites with enhanced energy density and thermal stability by interfibrillar cross-linking through Ca2+. J Mater Chem A 6:1403–1411CrossRef
Zurück zum Zitat Zhang D, Cai J, Xu W, Dong Q, Li Y, Liu G, Wang Z (2019) Synthesis, characterization and adsorption property of cellulose nanofiber-based hydrogels. J For Eng 4(02):92–98 Zhang D, Cai J, Xu W, Dong Q, Li Y, Liu G, Wang Z (2019) Synthesis, characterization and adsorption property of cellulose nanofiber-based hydrogels. J For Eng 4(02):92–98
Zurück zum Zitat Zhou S, Zhou G, Jiang S, Fan P, Hou H (2017) Flexible and refractory tantalum carbide–carbon electrospun nanofibers with high modulus and electric conductivity. Mater Lett 200:97–100CrossRef Zhou S, Zhou G, Jiang S, Fan P, Hou H (2017) Flexible and refractory tantalum carbide–carbon electrospun nanofibers with high modulus and electric conductivity. Mater Lett 200:97–100CrossRef
Metadaten
Titel
Electrically conductive polyacrylamide/carbon nanotube hydrogel: reinforcing effect from cellulose nanofibers
verfasst von
Chuchu Chen
Yiren Wang
Taotao Meng
Qijing Wu
Lu Fang
Di Zhao
Yiyi Zhang
Dagang Li
Publikationsdatum
24.08.2019
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 16/2019
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02710-8

Weitere Artikel der Ausgabe 16/2019

Cellulose 16/2019 Zur Ausgabe