Skip to main content
Erschienen in: Journal of Engineering Mathematics 1/2014

01.06.2014

On thermal resistance in concentric residential geothermal heat exchangers

verfasst von: S. Frei, K. Lockwood, G. Stewart, J. Boyer, B. S. Tilley

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Residential geothermal ground-source heat pumps have been used for nearly 30 years as a low-cost, environmentally friendly alternative to traditional fossil-fuel systems. However, the limitation on a wider range of acceptance of the technology is the cost of the installation of a piping network through which the energy is transferred between the soil and the coolant. This cost is proportional to the piping length. We formulate a new mathematical modeling framework that calculates a characteristic streamwise length based on the geometry of the system, the operating conditions, and the material properties of the system materials and effective properties of the surrounding soil using a vertical concentric geothermal heat exchanger as an example. These concentric systems consist of a core flow (from the residence), which flows from the ground surface to the base of the well, and an annular return region in which the heat exchange between the fluid and the soil is expected to take place. Two modeling scenarios are considered: steady-state temperature profiles in the annular fluid region if the radial thermal resistance between the fluid and soil is fixed; a quasi-steady fluid temperature that captures the radial heat transfer from the fluid to the soil. For the first case, we find that the characteristic length is determined by the smallest eigenvalue of the separable thermal problem, where the velocity profile is laminar and there is no thermal transport between the core and the fluid. When this core-annular heat transfer is possible, the eigenvalue problem no longer satisfies the conditions for Sturm–Liouville theory, and through direct computation we find that energy transferred from the annular flow to the core reduces the temperature change. In the second case, we find that the temperature change is reduced over time, as the soil temperature near the exchanger responds to the energy transport. In both cases, the best thermal transport takes place when the annular gap is small. The impact of these results on system design considerations is discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Huttrer GW (1997) Geothermal heat pumps: an increasingly successful technology. Renew Energy 10(2–3):481–488CrossRef Huttrer GW (1997) Geothermal heat pumps: an increasingly successful technology. Renew Energy 10(2–3):481–488CrossRef
2.
Zurück zum Zitat Omer AM (2008) Ground-source heat pumps systems and applications. Renew Sustain Energy Rev 12(2):344–371CrossRef Omer AM (2008) Ground-source heat pumps systems and applications. Renew Sustain Energy Rev 12(2):344–371CrossRef
3.
Zurück zum Zitat Bear J (1988) Dynamics of fluids in porous media. Dover Publications, New YorkMATH Bear J (1988) Dynamics of fluids in porous media. Dover Publications, New YorkMATH
4.
Zurück zum Zitat Ingersoll LR, Zobel OJ, Ingersoll AC (1948) Heat conduction, with engineering and geological applications. McGraw-Hill Book Co., New York Ingersoll LR, Zobel OJ, Ingersoll AC (1948) Heat conduction, with engineering and geological applications. McGraw-Hill Book Co., New York
5.
Zurück zum Zitat Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Oxford Science Publications, Oxford Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Oxford Science Publications, Oxford
6.
Zurück zum Zitat Lamarche L, Beauchamp B (2007) New solutions for the short-time analysis of geothermal vertical boreholes. Int J Heat Mass Transf 50(7–8):1408–1419CrossRefMATH Lamarche L, Beauchamp B (2007) New solutions for the short-time analysis of geothermal vertical boreholes. Int J Heat Mass Transf 50(7–8):1408–1419CrossRefMATH
7.
Zurück zum Zitat Dobson M, O’Neal DL, Aldred W (1995) A modified analytical method for simulating cyclic operation of vertical U-tube ground-coupled heat pumps. In: ASME international solar energy conference, Maui Dobson M, O’Neal DL, Aldred W (1995) A modified analytical method for simulating cyclic operation of vertical U-tube ground-coupled heat pumps. In: ASME international solar energy conference, Maui
8.
Zurück zum Zitat Yavuzturk C, Spitler JD (1999) A short time step response factor model for vertical ground loop heat exchangers. ASHRAE Trans 105:475–485 Yavuzturk C, Spitler JD (1999) A short time step response factor model for vertical ground loop heat exchangers. ASHRAE Trans 105:475–485
9.
Zurück zum Zitat Sutton MG, Nutter DW, Couvillion RJ, Davis RK (2002) An algorithm for approximating the performance of vertical bore heat exchangers installed in a stratified geological regime. ASHRAE Trans 108:177–194 Sutton MG, Nutter DW, Couvillion RJ, Davis RK (2002) An algorithm for approximating the performance of vertical bore heat exchangers installed in a stratified geological regime. ASHRAE Trans 108:177–194
10.
Zurück zum Zitat Zeng H, Diao N, Fang Z (2003) Heat transfer analysis of boreholes in vertical ground heat exchangers. Int J Heat Mass Transf 46:4467–4481CrossRef Zeng H, Diao N, Fang Z (2003) Heat transfer analysis of boreholes in vertical ground heat exchangers. Int J Heat Mass Transf 46:4467–4481CrossRef
11.
Zurück zum Zitat Michopoulos A, Kyriakis N (2009) Predicting the fluid temperature at the exit of the vertical ground heat exchangers. Appl Energy 86:2065–2070CrossRef Michopoulos A, Kyriakis N (2009) Predicting the fluid temperature at the exit of the vertical ground heat exchangers. Appl Energy 86:2065–2070CrossRef
12.
Zurück zum Zitat Zanchini E, Lazzari S, Priarone A (2010) Effects of flow direction and thermal short-circuiting on the performance of small coaxial ground heat exchangers. Renew Energy 35(6):1255–1265CrossRef Zanchini E, Lazzari S, Priarone A (2010) Effects of flow direction and thermal short-circuiting on the performance of small coaxial ground heat exchangers. Renew Energy 35(6):1255–1265CrossRef
13.
Zurück zum Zitat Ortan A, Quenneville-Bélair V, Tilley BS, Townsend J (2009) On Taylor dispersion effects for transient solutions in geothermal heating systems. Int J Heat Mass Transf 52:5072CrossRefMATH Ortan A, Quenneville-Bélair V, Tilley BS, Townsend J (2009) On Taylor dispersion effects for transient solutions in geothermal heating systems. Int J Heat Mass Transf 52:5072CrossRefMATH
14.
Zurück zum Zitat Tilley BS, Baumann T (2012) On temperature attenuation in staged open-loop wells. Renew Energy 46:416–423CrossRef Tilley BS, Baumann T (2012) On temperature attenuation in staged open-loop wells. Renew Energy 46:416–423CrossRef
15.
Zurück zum Zitat Taylor GI (1953) Dispersion of soluble matter in solvent flowing slowly through a tube. Proc R Soc Lond Ser A Math Phys Sci 219(1137):186–203ADSCrossRef Taylor GI (1953) Dispersion of soluble matter in solvent flowing slowly through a tube. Proc R Soc Lond Ser A Math Phys Sci 219(1137):186–203ADSCrossRef
16.
Zurück zum Zitat Taylor GI (1954) Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion. Proc R Soc Lond Ser A Math Phys Sci 225(1163):473–477ADSCrossRef Taylor GI (1954) Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion. Proc R Soc Lond Ser A Math Phys Sci 225(1163):473–477ADSCrossRef
17.
Zurück zum Zitat Aris R (1956) On the dispersion of a solute in a fluid flowing through a tube. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 235(1200):67–77 Aris R (1956) On the dispersion of a solute in a fluid flowing through a tube. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 235(1200):67–77
18.
Zurück zum Zitat Brenner MP, Stone HA (2000) Modern classical physics through the work of G.I Taylor. Phys Today 53:30–35ADSCrossRef Brenner MP, Stone HA (2000) Modern classical physics through the work of G.I Taylor. Phys Today 53:30–35ADSCrossRef
19.
Zurück zum Zitat Marcotte D, Pasquier P (2008) On the estimation of thermal resistance in borehole thermal conductivity test. Renew Energy 33:2407–2415CrossRef Marcotte D, Pasquier P (2008) On the estimation of thermal resistance in borehole thermal conductivity test. Renew Energy 33:2407–2415CrossRef
20.
Zurück zum Zitat Marcotte D, Pasquier P, Sheriff F, Bernier M (2010) The importance of axial effects for borehole design of geothermal heat-pump systems. Renew Energy 35:763–770CrossRef Marcotte D, Pasquier P, Sheriff F, Bernier M (2010) The importance of axial effects for borehole design of geothermal heat-pump systems. Renew Energy 35:763–770CrossRef
21.
Zurück zum Zitat Lemmon EW, McLinden MO, Friend DG Thermophysical properties of fluid systems. In: Linstrom PJ, Mallard WG (eds) NIST chemistry WebBook, NIST standard reference database number 69, National Institute of Standards and Technology, Gaithersburg. http://webbook.nist.gov (retrieved July 2012) Lemmon EW, McLinden MO, Friend DG Thermophysical properties of fluid systems. In: Linstrom PJ, Mallard WG (eds) NIST chemistry WebBook, NIST standard reference database number 69, National Institute of Standards and Technology, Gaithersburg. http://​webbook.​nist.​gov (retrieved July 2012)
22.
Zurück zum Zitat Peters-Lidard CD, Blackburn E, Liand X, Wood EF (1998) The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. J Atmos Sci 55:1209–1224ADSCrossRef Peters-Lidard CD, Blackburn E, Liand X, Wood EF (1998) The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. J Atmos Sci 55:1209–1224ADSCrossRef
23.
Zurück zum Zitat Krishnamoorthy C, Rao R, Ghajar A (2007) Single-phase heat transfer in micro-tubes: a critical review. In: Proceedings of the 2007 ASME-JSME thermal engineering summer heat transfer conference Krishnamoorthy C, Rao R, Ghajar A (2007) Single-phase heat transfer in micro-tubes: a critical review. In: Proceedings of the 2007 ASME-JSME thermal engineering summer heat transfer conference
24.
Zurück zum Zitat Incropera F, DeWitt D, Bergman T, Levine A (2006) Fundamentals of heat and mass transfer, 6th edn. Wiley, New York Incropera F, DeWitt D, Bergman T, Levine A (2006) Fundamentals of heat and mass transfer, 6th edn. Wiley, New York
25.
Zurück zum Zitat Kays WM, Crawford ME (1993) Convective heat and mass transfer, 3rd edn. McGraw-Hill, New York Kays WM, Crawford ME (1993) Convective heat and mass transfer, 3rd edn. McGraw-Hill, New York
26.
Zurück zum Zitat Boyce WE, DiPrima RC (2008) Elementary differential equations and boundary value problems, 7th edn. Wiley, New York Boyce WE, DiPrima RC (2008) Elementary differential equations and boundary value problems, 7th edn. Wiley, New York
27.
Zurück zum Zitat Carslaw HS (1921) Introduction to the theory of Fourier series and integrals. In: Carslaw HS (ed) Introduction to the theory of Fourier’s series and integrals and the mathematical theory of the conduction of heat. Macmillan, London Carslaw HS (1921) Introduction to the theory of Fourier series and integrals. In: Carslaw HS (ed) Introduction to the theory of Fourier’s series and integrals and the mathematical theory of the conduction of heat. Macmillan, London
28.
Zurück zum Zitat Abramowitz M, Stegun IA (1972) Handbook of mathematical functions. Dover Publications, New YorkMATH Abramowitz M, Stegun IA (1972) Handbook of mathematical functions. Dover Publications, New YorkMATH
29.
Zurück zum Zitat Buckmire R (2003) Investigation of nonstandard, Mickens-type, finite-difference schemes for singular boundary value problems in spherical or spherical coordinates. Numer Methods Partial Differ Equ 19(3):380–398CrossRefMATHMathSciNet Buckmire R (2003) Investigation of nonstandard, Mickens-type, finite-difference schemes for singular boundary value problems in spherical or spherical coordinates. Numer Methods Partial Differ Equ 19(3):380–398CrossRefMATHMathSciNet
Metadaten
Titel
On thermal resistance in concentric residential geothermal heat exchangers
verfasst von
S. Frei
K. Lockwood
G. Stewart
J. Boyer
B. S. Tilley
Publikationsdatum
01.06.2014
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2014
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-013-9655-4

Weitere Artikel der Ausgabe 1/2014

Journal of Engineering Mathematics 1/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.