Skip to main content
Erschienen in: Journal of Computational Neuroscience 1/2008

01.02.2008

Transition between two excitabilities in mesencephalic V neurons

verfasst von: Yihui Liu, Jing Yang, Sanjue Hu

Erschienen in: Journal of Computational Neuroscience | Ausgabe 1/2008

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Neurons can make different responses to identical inputs. According to the emerging frequency of repetitive firing, neurons are classified into two types: type 1 and type 2 excitability. Though in mathematical simulations, minor modifications of parameters describing ionic currents can result in transitions between these two excitabilities, empirical evidence to support these theoretical possibilities is scarce. Here we report a joint theoretical and experimental study to test the hypothesis that changes in parameters describing ionic currents cause predictable transitions between the two excitabilities in mesencephalic V (Mes V) neurons. We developed a simple mathematical model of Mes V neurons. Using bifurcation analysis and model simulation, we then predicted that changes in conductance of two low-threshold currents would result in transitions between type 1 and type 2. Finally, by applying specific channel blockers, we observed the transition between two excitabilities forecast by the mathematical model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Del Negro, C. A., & Chandler, S. H. (1997). Physiological and theoretical analysis of K+ currents controlling discharge in neonatal rat mesencephalic trigeminal neurons. Journal of Neurophysiology, 77, 537–553.PubMed Del Negro, C. A., & Chandler, S. H. (1997). Physiological and theoretical analysis of K+ currents controlling discharge in neonatal rat mesencephalic trigeminal neurons. Journal of Neurophysiology, 77, 537–553.PubMed
Zurück zum Zitat Ermentrout, B. (1996). Type I membranes, phase resetting curves, and synchrony. Neural Computation, 8, 979–1001.PubMed Ermentrout, B. (1996). Type I membranes, phase resetting curves, and synchrony. Neural Computation, 8, 979–1001.PubMed
Zurück zum Zitat Ermentrout, B., Pascal, M., & Gutkin, B. (2001). The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators. Neural Computation, 13, 1285–1310.PubMedCrossRef Ermentrout, B., Pascal, M., & Gutkin, B. (2001). The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators. Neural Computation, 13, 1285–1310.PubMedCrossRef
Zurück zum Zitat Guckenheimer, J., Harris-Warrick, R., Peck, J., & Willms, A. (1997). Bifurcation, bursting, and spike frequency adaptation. Journal of Computational Neuroscience, 4, 257–277.PubMedCrossRef Guckenheimer, J., Harris-Warrick, R., Peck, J., & Willms, A. (1997). Bifurcation, bursting, and spike frequency adaptation. Journal of Computational Neuroscience, 4, 257–277.PubMedCrossRef
Zurück zum Zitat Gutkin, B. S., & Ermentrout, G. B. (1998). Dynamics of membrane excitability determine interspike interval variability: A link between spike generation mechanisms and cortical spike train statistics. Neural Computation, 10, 1047–1065.PubMedCrossRef Gutkin, B. S., & Ermentrout, G. B. (1998). Dynamics of membrane excitability determine interspike interval variability: A link between spike generation mechanisms and cortical spike train statistics. Neural Computation, 10, 1047–1065.PubMedCrossRef
Zurück zum Zitat Gutkin, B. S., Ermentrout, G. B., & Reyes, A. D. (2005). Phase-response curves give the responses of neurons to transient inputs. Journal of Neurophysiology, 94, 1623–1635.PubMedCrossRef Gutkin, B. S., Ermentrout, G. B., & Reyes, A. D. (2005). Phase-response curves give the responses of neurons to transient inputs. Journal of Neurophysiology, 94, 1623–1635.PubMedCrossRef
Zurück zum Zitat Hansel, D., Mato, G., & Meunier, C. (1995). Synchrony in excitatory neural networks. Neural Computation, 7, 307–337.PubMedCrossRef Hansel, D., Mato, G., & Meunier, C. (1995). Synchrony in excitatory neural networks. Neural Computation, 7, 307–337.PubMedCrossRef
Zurück zum Zitat Henderson, G., Pepper, C. M., & Shefner, S. A. (1982). Electrophysiological properties of neurons contained in the locus coeruleus and mesencephalic nucleus of the trigeminal nerve in vitro. Experimental Brain Research, 45, 29–37.PubMedCrossRef Henderson, G., Pepper, C. M., & Shefner, S. A. (1982). Electrophysiological properties of neurons contained in the locus coeruleus and mesencephalic nucleus of the trigeminal nerve in vitro. Experimental Brain Research, 45, 29–37.PubMedCrossRef
Zurück zum Zitat Hodgkin, A. L. (1948). The local electric changes associated with repetitive action in a non-medullated axon. Journal of Physiology, 107, 165–181.PubMed Hodgkin, A. L. (1948). The local electric changes associated with repetitive action in a non-medullated axon. Journal of Physiology, 107, 165–181.PubMed
Zurück zum Zitat Izhikevich, E. M. (2000). Neural excitability, spiking and bursting. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 10, 1171–1266.CrossRef Izhikevich, E. M. (2000). Neural excitability, spiking and bursting. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 10, 1171–1266.CrossRef
Zurück zum Zitat Izhikevich, E. M. (2007). Dynamical systems in neuroscience: The geometry of excitability and bursting. Cambridge, MA: MIT. Izhikevich, E. M. (2007). Dynamical systems in neuroscience: The geometry of excitability and bursting. Cambridge, MA: MIT.
Zurück zum Zitat Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35, 193–213.PubMedCrossRef Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35, 193–213.PubMedCrossRef
Zurück zum Zitat Prinz, A. A., Abbott, L. F., & Marder, E. (2004). The dynamic clamp comes of age. Trends in Neurosciences, 27, 218–224.PubMedCrossRef Prinz, A. A., Abbott, L. F., & Marder, E. (2004). The dynamic clamp comes of age. Trends in Neurosciences, 27, 218–224.PubMedCrossRef
Zurück zum Zitat Rinzel, J., Ermentrout, B. (1998). Analysis of neural excitability and oscillations. In C. Koch, I. Segev (Eds.), Methods in neuronal modeling: From ions to networks (pp. 251–291). Cambridge, MA: MIT. Rinzel, J., Ermentrout, B. (1998). Analysis of neural excitability and oscillations. In C. Koch, I. Segev (Eds.), Methods in neuronal modeling: From ions to networks (pp. 251–291). Cambridge, MA: MIT.
Zurück zum Zitat Robinson, H. P., & Harsch, A. (2002). Stages of spike time variability during neuronal responses to transient inputs. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 66, 061902. Robinson, H. P., & Harsch, A. (2002). Stages of spike time variability during neuronal responses to transient inputs. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 66, 061902.
Zurück zum Zitat Robinson, H. P., & Kawai, N. (1993). Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons. Journal of Neuroscience Methods, 49, 157–165.PubMedCrossRef Robinson, H. P., & Kawai, N. (1993). Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons. Journal of Neuroscience Methods, 49, 157–165.PubMedCrossRef
Zurück zum Zitat Schurr, A., West, C. A., & Rigor, B. M. (1988). Lactate-supported synaptic function in the rat hippocampal slice preparation. Science, 240, 1326–1328.PubMedCrossRef Schurr, A., West, C. A., & Rigor, B. M. (1988). Lactate-supported synaptic function in the rat hippocampal slice preparation. Science, 240, 1326–1328.PubMedCrossRef
Zurück zum Zitat Sharp, A., O’Neil, M., Abbott, L., & Marder, E. (1993a). Dynamic clamp: Computer-generated conductances in real neurons. Journal of Neurophysiology, 69, 992–995.PubMed Sharp, A., O’Neil, M., Abbott, L., & Marder, E. (1993a). Dynamic clamp: Computer-generated conductances in real neurons. Journal of Neurophysiology, 69, 992–995.PubMed
Zurück zum Zitat Sharp, A., O’Neil, M., Abbott, L., & Marder, E. (1993b). The dynamic clamp: Artificial conductances in biological neurons. Trends in Neurosciences, 16, 389–394.PubMedCrossRef Sharp, A., O’Neil, M., Abbott, L., & Marder, E. (1993b). The dynamic clamp: Artificial conductances in biological neurons. Trends in Neurosciences, 16, 389–394.PubMedCrossRef
Zurück zum Zitat Tanaka, S., Wu, N., Hsaio, C. F., Turman Jr., J., & Chandler, S. H. (2003). Development of inward rectification and control of membrane excitability in mesencephalic V neurons. Journal of Neurophysiology, 89, 1288–1298.PubMedCrossRef Tanaka, S., Wu, N., Hsaio, C. F., Turman Jr., J., & Chandler, S. H. (2003). Development of inward rectification and control of membrane excitability in mesencephalic V neurons. Journal of Neurophysiology, 89, 1288–1298.PubMedCrossRef
Zurück zum Zitat Wu, N., Enomoto, A., Tanaka, S., Hsiao, C. F., Nykamp, D. Q., Izhikevich, E., et al. (2005). Persistent sodium currents in mesencephalic V neurons participate in burst generation and control of membrane excitability. Journal of Neurophysiology, 93, 2710–2722.PubMedCrossRef Wu, N., Enomoto, A., Tanaka, S., Hsiao, C. F., Nykamp, D. Q., Izhikevich, E., et al. (2005). Persistent sodium currents in mesencephalic V neurons participate in burst generation and control of membrane excitability. Journal of Neurophysiology, 93, 2710–2722.PubMedCrossRef
Zurück zum Zitat Wu, N., Hsiao, C. F., & Chandler, S. H. (2001). Membrane resonance and subthreshold membrane oscillations in mesencephalic V neurons: Participants in burst generation. Journal of Neuroscience, 21, 3729–3739.PubMed Wu, N., Hsiao, C. F., & Chandler, S. H. (2001). Membrane resonance and subthreshold membrane oscillations in mesencephalic V neurons: Participants in burst generation. Journal of Neuroscience, 21, 3729–3739.PubMed
Zurück zum Zitat Zhang, L., & Krnjevic, K. (1993). Whole-cell recording of anoxic effects on hippocampal neurons in slices. Journal of Neurophysiology, 69, 118–127.PubMed Zhang, L., & Krnjevic, K. (1993). Whole-cell recording of anoxic effects on hippocampal neurons in slices. Journal of Neurophysiology, 69, 118–127.PubMed
Metadaten
Titel
Transition between two excitabilities in mesencephalic V neurons
verfasst von
Yihui Liu
Jing Yang
Sanjue Hu
Publikationsdatum
01.02.2008
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 1/2008
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-007-0048-4

Weitere Artikel der Ausgabe 1/2008

Journal of Computational Neuroscience 1/2008 Zur Ausgabe

Premium Partner