Skip to main content
Erschienen in: Journal of Materials Science 5/2014

01.03.2014

The effect of boron nitride on electrical conductivity of nanocarbon-polymer composites

verfasst von: Yu. S. Perets, L. Yu. Matzui, L. L. Vovchenko, Yu. I. Prylutskyy, P. Scharff, U. Ritter

Erschienen in: Journal of Materials Science | Ausgabe 5/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The electrical conductivity concentration and temperature dependences of polymer composite materials (CMs) with nanocarbon fillers [graphite nanoplatelets and multi-walled carbon nanotubes (MWCNTs)] were investigated. Epoxy resin modified with organosilicon compound was used as polymer matrix. The content of nanocarbon filler in varied from 1 to 10 wt%. To study of the synergetic properties the additional dispersed dielectric filler—boron nitride (BN) was added to given systems in content of 27 wt%. The electrical resistivity of CMs was investigated in the temperature range of 77–300 K. In the studied CMs the percolation transition at sufficient low filler content (0.01–0.022 vol. fr.) was observed. The values of critical index varied from 3.0 to 5.2. The electrical conductivity of investigated CMs was analyzed in the framework of proposed model that takes into consideration the morphology of filler particles. It was shown that the increase of electrical conductivity of GNP-polymer CM in the presence of BN is attributed to the decrease of contact resistance between filler particles, while for MWCNT-polymer CM is due to the increase of the number of conductive chains in this particular system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Du J-H, Bai J, Cheng H-M (2007) The present status and key problems of carbon nanotube based polymer composites. Express Polym Lett 1(5):253–273CrossRef Du J-H, Bai J, Cheng H-M (2007) The present status and key problems of carbon nanotube based polymer composites. Express Polym Lett 1(5):253–273CrossRef
2.
Zurück zum Zitat Yu L, Zhang Y, Tong W, Shang J, Shen B, Lv F (2012) Green dielectric materials composed of natural graphite minerals and biodegradable polymer. RSC Adv 2:8793–8796CrossRef Yu L, Zhang Y, Tong W, Shang J, Shen B, Lv F (2012) Green dielectric materials composed of natural graphite minerals and biodegradable polymer. RSC Adv 2:8793–8796CrossRef
3.
Zurück zum Zitat Zheng W, Wong S-C (2003) Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Compos Sci Technol 63:225–235CrossRef Zheng W, Wong S-C (2003) Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Compos Sci Technol 63:225–235CrossRef
4.
Zurück zum Zitat Krupa I, Chodak I (2001) Physical properties of thermoplastic/graphite composites. Eur Polym J 37:2159–2168CrossRef Krupa I, Chodak I (2001) Physical properties of thermoplastic/graphite composites. Eur Polym J 37:2159–2168CrossRef
5.
Zurück zum Zitat Hernandez Y, Gryson A, Blighe F, Cadek M, Nicolosi V, Blau W (2008) Comparison of carbon nanotubes and nanodisks as percolative fillers in electrically conductive composites. Scr Mater 58(1):69–72CrossRef Hernandez Y, Gryson A, Blighe F, Cadek M, Nicolosi V, Blau W (2008) Comparison of carbon nanotubes and nanodisks as percolative fillers in electrically conductive composites. Scr Mater 58(1):69–72CrossRef
6.
Zurück zum Zitat Leng J, Lv H, Liu Y, Du S (2008) Synergic effect of carbon black and short carbon fiber on shape memory polymer actuation by electricity. J Appl Phys 104:1049171–1049174CrossRef Leng J, Lv H, Liu Y, Du S (2008) Synergic effect of carbon black and short carbon fiber on shape memory polymer actuation by electricity. J Appl Phys 104:1049171–1049174CrossRef
7.
Zurück zum Zitat Fan Z, Zheng C, Wei T, Zhang Y, Luo G (2009) Effect of carbon black on electrical property of graphite nanoplatelets/epoxy resin composites. Polym Eng Sci 49(10):2041–2045CrossRef Fan Z, Zheng C, Wei T, Zhang Y, Luo G (2009) Effect of carbon black on electrical property of graphite nanoplatelets/epoxy resin composites. Polym Eng Sci 49(10):2041–2045CrossRef
8.
Zurück zum Zitat Kumar S, Sun L, Caceres S, Li B, Wood W, Perugini A (2010) Dynamic synergy of graphitic nanoplatelets and multi-walled carbon nanotubes in polyetherimide nanocomposites. Nanotechnology 21(10):1–9CrossRef Kumar S, Sun L, Caceres S, Li B, Wood W, Perugini A (2010) Dynamic synergy of graphitic nanoplatelets and multi-walled carbon nanotubes in polyetherimide nanocomposites. Nanotechnology 21(10):1–9CrossRef
9.
Zurück zum Zitat Li J, Wong P-S, Kim J-K (2008) Hybrid nanocomposites containing carbon nanotubes and graphite nanoplatelets. Mater Sci Eng 483–484:660–663CrossRef Li J, Wong P-S, Kim J-K (2008) Hybrid nanocomposites containing carbon nanotubes and graphite nanoplatelets. Mater Sci Eng 483–484:660–663CrossRef
10.
Zurück zum Zitat Cho J, Chen J, Daniel I (2007) Mechanical enhancement of carbon fiber/epoxy composites by graphite nanoplatelet reinforcement. Scr Mater 56(8):685–688CrossRef Cho J, Chen J, Daniel I (2007) Mechanical enhancement of carbon fiber/epoxy composites by graphite nanoplatelet reinforcement. Scr Mater 56(8):685–688CrossRef
11.
Zurück zum Zitat Sumfleth J, Prado A, Richau S, Sriyai M, Schulte K (2009) Enhanced dispersion of MWCNTs and synergistic properties in multiphase epoxy nanocomposites by incorporation of inorganic nanoparticles. Solid State Phenom 151:176–180CrossRef Sumfleth J, Prado A, Richau S, Sriyai M, Schulte K (2009) Enhanced dispersion of MWCNTs and synergistic properties in multiphase epoxy nanocomposites by incorporation of inorganic nanoparticles. Solid State Phenom 151:176–180CrossRef
12.
Zurück zum Zitat Bilotti E, Zhang H, Deng H, Zhang R, Fu Q, Peijs T (2013) Controlling the dynamic percolation of carbon nanotube based conductive polymer composites by addition of secondary nanofillers: the effect on electrical conductivity and tuneable sensing behaviour. Compos Sci Technol 74:85–90CrossRef Bilotti E, Zhang H, Deng H, Zhang R, Fu Q, Peijs T (2013) Controlling the dynamic percolation of carbon nanotube based conductive polymer composites by addition of secondary nanofillers: the effect on electrical conductivity and tuneable sensing behaviour. Compos Sci Technol 74:85–90CrossRef
13.
Zurück zum Zitat Yu A, Ramesh P, Sun X, Bekyarova E, Itkis M, Haddon R (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites. Adv Mater 20:4740–4744CrossRef Yu A, Ramesh P, Sun X, Bekyarova E, Itkis M, Haddon R (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites. Adv Mater 20:4740–4744CrossRef
14.
Zurück zum Zitat Kharkiv EI, Lysov VI, Matzui LYu, Vovchenko LL, Tsurul MF, Morozov NO (2001) Device for obtaining thermoexfoliated graphite. Ukraine Patent 40256A Kharkiv EI, Lysov VI, Matzui LYu, Vovchenko LL, Tsurul MF, Morozov NO (2001) Device for obtaining thermoexfoliated graphite. Ukraine Patent 40256A
15.
Zurück zum Zitat Perers Yu, Matzuy L, Vovchenko L (2013) Investigation of size distribution of graphite nanoplatelets. Perspect Mater 5:68–73 Perers Yu, Matzuy L, Vovchenko L (2013) Investigation of size distribution of graphite nanoplatelets. Perspect Mater 5:68–73
16.
Zurück zum Zitat Perets YuS, Ovsiienko IV, Vovchenko LL, Matzui LYu, Brusilovetz OA, Pundyk IP (2012) Characterization of nanodispersed graphite. Ukr J Phys 57(2):219–223 Perets YuS, Ovsiienko IV, Vovchenko LL, Matzui LYu, Brusilovetz OA, Pundyk IP (2012) Characterization of nanodispersed graphite. Ukr J Phys 57(2):219–223
17.
Zurück zum Zitat Stauffer D, Aharony A (1994) Introduction to percolation theory. Taylor and Francis, London, pp 89–113 Stauffer D, Aharony A (1994) Introduction to percolation theory. Taylor and Francis, London, pp 89–113
18.
Zurück zum Zitat Lazarenko O, Vovchenko L, Matzui L, Perets J (2011) The electronic transport properties of the composites with nanosized carbon fillers. Mol Cryst Liq Cryst 536(1):72–80CrossRef Lazarenko O, Vovchenko L, Matzui L, Perets J (2011) The electronic transport properties of the composites with nanosized carbon fillers. Mol Cryst Liq Cryst 536(1):72–80CrossRef
19.
Zurück zum Zitat Mamunya Y, Muzychenko Y, Lebedev E, Boiteux G, Seytre G, Boullanger C (2007) PTC effect and structure of polymer composites based on polyethylene/polyoxymethylene blend filled with dispersed iron. Polym Eng Sci 47(1):35–42CrossRef Mamunya Y, Muzychenko Y, Lebedev E, Boiteux G, Seytre G, Boullanger C (2007) PTC effect and structure of polymer composites based on polyethylene/polyoxymethylene blend filled with dispersed iron. Polym Eng Sci 47(1):35–42CrossRef
20.
Zurück zum Zitat Lebovka N, Lisunova M, Mamunya Y, Vygornitskii N (2006) Scaling in percolation behaviour in conductive-insulating composites with particles of different size. J Phys D 39(10):1–8CrossRef Lebovka N, Lisunova M, Mamunya Y, Vygornitskii N (2006) Scaling in percolation behaviour in conductive-insulating composites with particles of different size. J Phys D 39(10):1–8CrossRef
21.
Zurück zum Zitat Lazarenko A, Vovchenko L, Prylutskyy Y, Matzuy L, Ritter U, Scharff P (2009) Mechanism of thermal and electrical conductivity in polymer-nanocarbon composites. Mat-wiss Werkst 40(4):268–272CrossRef Lazarenko A, Vovchenko L, Prylutskyy Y, Matzuy L, Ritter U, Scharff P (2009) Mechanism of thermal and electrical conductivity in polymer-nanocarbon composites. Mat-wiss Werkst 40(4):268–272CrossRef
Metadaten
Titel
The effect of boron nitride on electrical conductivity of nanocarbon-polymer composites
verfasst von
Yu. S. Perets
L. Yu. Matzui
L. L. Vovchenko
Yu. I. Prylutskyy
P. Scharff
U. Ritter
Publikationsdatum
01.03.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 5/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-013-7901-9

Weitere Artikel der Ausgabe 5/2014

Journal of Materials Science 5/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.