Skip to main content
Erschienen in: Journal of Materials Science 14/2014

01.07.2014

Wood cell wall mimicking for composite films of spruce nanofibrillated cellulose with spruce galactoglucomannan and arabinoglucuronoxylan

verfasst von: Jasna S. Stevanic, Kirsi S. Mikkonen, Chunlin Xu, Maija Tenkanen, Lars Berglund, Lennart Salmén

Erschienen in: Journal of Materials Science | Ausgabe 14/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Two hemicelluloses (HCs), galactoglucomannan (GGM) and arabinoglucuronoxylan (AGX), and nanofibrillated cellulose (NFC) were isolated from spruce wood and used for the preparation of composite films containing high amounts of cellulose, i.e. 85 and 80 wt% of NFC, respectively. The films were prepared in two ways: (i) by the pre-sorption of HCs on NFC and (ii) by the mixing of components in the usual way. Pre-sorption was applied in an attempt to mimic the carbohydrate biosynthesis pattern during wood cell wall development, where HCs were deposited on the cellulose fibrils prior to lignification taking place. It was assumed that pre-sorption would result in a better film-forming as well as stronger and denser composite films. The mechanical, thermal, structural, moisture sorption and oxygen barrier characteristics of such composite films were tested in order to examine whether the performance of composite films prepared by pre-sorption was better, when compared to the performance of composite films prepared by mixing. The performance of composite films was also tested with respect to the HCs used. All the films showed quite similar barrier and mechanical properties. In general, stiff, strong and quite ductile films were produced. The moisture sorption of the films was comparably low. The oxygen barrier properties of the films were in the range of commercially used poly ethylene vinyl alcohol films. However, the pre-sorption procedure for the preparation of composite films resulted in no additional improvement in the performance of the films compared to the corresponding composite films that had been prepared using the mixing process. Almost certainly, the applied mixing process led to an optimal mixing of components for the film performance achieved. The GGM contributed to a somewhat better film performance than the AGX did. Indications were observed for stronger interactions between the GGM and NFC than that for the AGX and NFC.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Carpita N, McCann M (2000) The cell wall. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 52–108 Carpita N, McCann M (2000) The cell wall. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 52–108
2.
Zurück zum Zitat Bacic A, Harris PJ, Stone BA (1988) Structure and function of plant cell walls. In: Preiss J (ed) The biochemistry of plants. Academic Press, Inc., New York, pp 297–371CrossRef Bacic A, Harris PJ, Stone BA (1988) Structure and function of plant cell walls. In: Preiss J (ed) The biochemistry of plants. Academic Press, Inc., New York, pp 297–371CrossRef
3.
Zurück zum Zitat Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815–827 Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815–827
4.
Zurück zum Zitat Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–813 Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–813
5.
Zurück zum Zitat Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Roukolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRef Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Roukolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRef
6.
Zurück zum Zitat Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441CrossRef Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441CrossRef
7.
Zurück zum Zitat Wilfför S, Rehn P, Sundberg A, Sundberg K, Holmbom B (2003) Recovery of water-soluble acetylgalactoglucomannans from mechanical pulp of spruce. Tappi J 2:27–32 Wilfför S, Rehn P, Sundberg A, Sundberg K, Holmbom B (2003) Recovery of water-soluble acetylgalactoglucomannans from mechanical pulp of spruce. Tappi J 2:27–32
8.
Zurück zum Zitat Xu C, Willför S, Sundberg K, Petterson C, Holmbom B (2006) Physico-chemical characterisation of spruce galactoglucomannan solutions: stability, surface, activity and rheology. Cellul Chem Technol 41:51–62 Xu C, Willför S, Sundberg K, Petterson C, Holmbom B (2006) Physico-chemical characterisation of spruce galactoglucomannan solutions: stability, surface, activity and rheology. Cellul Chem Technol 41:51–62
9.
Zurück zum Zitat Dahlman O, Tomani P, Axegård P, Lundqvist F, Lindgren K (2007) Method for separating polymeric pentose from liquid/slurry. World Intellectual Property Organization (WIPO), Stockholm, pp 1–14 Dahlman O, Tomani P, Axegård P, Lundqvist F, Lindgren K (2007) Method for separating polymeric pentose from liquid/slurry. World Intellectual Property Organization (WIPO), Stockholm, pp 1–14
10.
Zurück zum Zitat Nisperos-Carriedo MO (1994) Edible coatings and films based on polysaccharides. In: Krochta JM, Baldwin EA, Nisperos-Carriedo MO (eds) Edible coatings and films to improve food quality. Technomic Publishing Company, Lancaster, pp 305–336 Nisperos-Carriedo MO (1994) Edible coatings and films based on polysaccharides. In: Krochta JM, Baldwin EA, Nisperos-Carriedo MO (eds) Edible coatings and films to improve food quality. Technomic Publishing Company, Lancaster, pp 305–336
11.
Zurück zum Zitat Gröndahl M, Eriksson L, Gatenholm P (2004) Material properties of plasticized hardwood xylans for potential application of oxygen barrier films. Biomacromolecules 5:1528–1535CrossRef Gröndahl M, Eriksson L, Gatenholm P (2004) Material properties of plasticized hardwood xylans for potential application of oxygen barrier films. Biomacromolecules 5:1528–1535CrossRef
12.
Zurück zum Zitat Höije A, Sternemalm E, Heikkinen S, Tenkanen M, Gatenholm P (2008) Material properties of films from enzymatically tailored arabinoxylans. Biomacromolecules 9:2042–2047CrossRef Höije A, Sternemalm E, Heikkinen S, Tenkanen M, Gatenholm P (2008) Material properties of films from enzymatically tailored arabinoxylans. Biomacromolecules 9:2042–2047CrossRef
13.
Zurück zum Zitat Mikkonen KS, Heikkinen S, Soovre A, Peura M, Serimaa R, Talja AR, Helén H, Hyvönen L, Tenkanen M (2009) Films from oat spelt arabinoxylan plasticized with glycerol and sorbitol. J Appl Polym Sci 114:457–466CrossRef Mikkonen KS, Heikkinen S, Soovre A, Peura M, Serimaa R, Talja AR, Helén H, Hyvönen L, Tenkanen M (2009) Films from oat spelt arabinoxylan plasticized with glycerol and sorbitol. J Appl Polym Sci 114:457–466CrossRef
14.
Zurück zum Zitat Stevanic JS, Joly C, Mikkonen KS, Pirkkalainen K, Serimaa R, Rémond C, Toriz G, Gatenholm P, Tenkanen M, Salmén L (2011) Bacterial nanocellulose-reinforced arabinoxylan films. J Appl Polym Sci 122:1030–1039CrossRef Stevanic JS, Joly C, Mikkonen KS, Pirkkalainen K, Serimaa R, Rémond C, Toriz G, Gatenholm P, Tenkanen M, Salmén L (2011) Bacterial nanocellulose-reinforced arabinoxylan films. J Appl Polym Sci 122:1030–1039CrossRef
15.
Zurück zum Zitat Mikkonen KS, Stevanic JS, Joly C, Dole P, Pirkkalainen K, Serimaa R, Salmén L, Tenkanen M (2011) Composite films from spruce galactoglucomannans with microfibrillated spruce wood cellulose. Cellulose 18:713–726CrossRef Mikkonen KS, Stevanic JS, Joly C, Dole P, Pirkkalainen K, Serimaa R, Salmén L, Tenkanen M (2011) Composite films from spruce galactoglucomannans with microfibrillated spruce wood cellulose. Cellulose 18:713–726CrossRef
17.
Zurück zum Zitat Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574CrossRef Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574CrossRef
18.
Zurück zum Zitat Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585CrossRef Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585CrossRef
19.
Zurück zum Zitat Ribe E, Lindblad MS, Dahlman O, Theliander H (2010) Xylan sorption kinetics at industrial conditions. Part 1. Experimental results. Nord Pulp Pap Res J 25:138–149CrossRef Ribe E, Lindblad MS, Dahlman O, Theliander H (2010) Xylan sorption kinetics at industrial conditions. Part 1. Experimental results. Nord Pulp Pap Res J 25:138–149CrossRef
20.
Zurück zum Zitat Eronen P, Junka K, Laine J, Österberg M (2011) Interaction between water-soluble polysaccharides and native nanofibrillar cellulose thin films. BioResources 6:4200–4217 Eronen P, Junka K, Laine J, Österberg M (2011) Interaction between water-soluble polysaccharides and native nanofibrillar cellulose thin films. BioResources 6:4200–4217
21.
Zurück zum Zitat Köhnke T, Pujolras C, Roubroeks JP, Gatenholm P (2008) The effect of barley husk arabinoxylan adsorption on the properties of cellulose fibres. Cellulose 15:537–546CrossRef Köhnke T, Pujolras C, Roubroeks JP, Gatenholm P (2008) The effect of barley husk arabinoxylan adsorption on the properties of cellulose fibres. Cellulose 15:537–546CrossRef
22.
Zurück zum Zitat Hannuksela T, Tenkanen M, Holmbom B (2002) Sorption of dissolved galactoglucomannans and galactomannans to bleached kraft pulp. Cellulose 9:251–261CrossRef Hannuksela T, Tenkanen M, Holmbom B (2002) Sorption of dissolved galactoglucomannans and galactomannans to bleached kraft pulp. Cellulose 9:251–261CrossRef
23.
Zurück zum Zitat Hartler N, Lund A (1962) Sorption of xylans on cotton. Sven Papperstidning 65:951–955 Hartler N, Lund A (1962) Sorption of xylans on cotton. Sven Papperstidning 65:951–955
24.
Zurück zum Zitat Hansson J-Å (1970) Sorption of hemicelluloses on cellulose fibres. Pt. 2 Sorption of glucomannan. Holtzforschung 24:77–83CrossRef Hansson J-Å (1970) Sorption of hemicelluloses on cellulose fibres. Pt. 2 Sorption of glucomannan. Holtzforschung 24:77–83CrossRef
25.
Zurück zum Zitat Ishii T, Shimizu K (2001) Chemistry of cell wall polysaccharides. In: Hon DN-S, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker, Inc., New York, pp 175–212 Ishii T, Shimizu K (2001) Chemistry of cell wall polysaccharides. In: Hon DN-S, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker, Inc., New York, pp 175–212
26.
Zurück zum Zitat Ban W, van Heiningen A (2011) Adsorption of hemicellulose extracts from hardwood onto cellulosic fibres. I. Effects of adsorption and optimization factors. Cellul Chem Technol 45:57–65 Ban W, van Heiningen A (2011) Adsorption of hemicellulose extracts from hardwood onto cellulosic fibres. I. Effects of adsorption and optimization factors. Cellul Chem Technol 45:57–65
27.
Zurück zum Zitat Svagan AJ, Azizi SMAS, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8:2556–2563CrossRef Svagan AJ, Azizi SMAS, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8:2556–2563CrossRef
28.
Zurück zum Zitat Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials—a review. Cellulose 17:459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials—a review. Cellulose 17:459–494CrossRef
29.
Zurück zum Zitat Rowell RM, Pettersen R, Han JS, Rowell JS, Tshabalala MA (2005) Cell wall chemistry. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. CRC Press, Boca Raton, pp 35–74 Rowell RM, Pettersen R, Han JS, Rowell JS, Tshabalala MA (2005) Cell wall chemistry. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. CRC Press, Boca Raton, pp 35–74
30.
Zurück zum Zitat Reid JSG (1997) Carbohydrate metabolism: structural carbohydrates. In: Dey PM, Harborne JB (eds) Plant biochemistry. Academic Press, London, pp 205–236CrossRef Reid JSG (1997) Carbohydrate metabolism: structural carbohydrates. In: Dey PM, Harborne JB (eds) Plant biochemistry. Academic Press, London, pp 205–236CrossRef
31.
Zurück zum Zitat Xu C, Leppänen A-S, Eklund P, Holmlund P, Sjöholm R, Sundberg K, Willför S (2010) Acetylation and characterization of spruce (Picea abies) galactoglucomannans. Carbohydr Res 345:810–816CrossRef Xu C, Leppänen A-S, Eklund P, Holmlund P, Sjöholm R, Sundberg K, Willför S (2010) Acetylation and characterization of spruce (Picea abies) galactoglucomannans. Carbohydr Res 345:810–816CrossRef
32.
Zurück zum Zitat Sundberg A, Sundberg K, Lillandt C, Holmbom B (1996) Determination of hemicelluloses and pectins in wood and pulp fibres by acid methanolysis and gas chromatography. Nord Pulp Pap Res J 11:216–219CrossRef Sundberg A, Sundberg K, Lillandt C, Holmbom B (1996) Determination of hemicelluloses and pectins in wood and pulp fibres by acid methanolysis and gas chromatography. Nord Pulp Pap Res J 11:216–219CrossRef
33.
Zurück zum Zitat Dahlman O, Jacobs A, Liljenberg A, Olsson AI (2000) Analysis of carbohydrates in wood and pulps employing enzymatic hydrolysis and subsequent capillary zone electrophoresis. J Chromatogr A 891:157–174CrossRef Dahlman O, Jacobs A, Liljenberg A, Olsson AI (2000) Analysis of carbohydrates in wood and pulps employing enzymatic hydrolysis and subsequent capillary zone electrophoresis. J Chromatogr A 891:157–174CrossRef
34.
Zurück zum Zitat Olsson A-M, Salmén L (2004) The association of water to cellulose and hemicellulose in paper examined by FTIR spectroscopy. Carbohydr Res 339:813–818CrossRef Olsson A-M, Salmén L (2004) The association of water to cellulose and hemicellulose in paper examined by FTIR spectroscopy. Carbohydr Res 339:813–818CrossRef
35.
Zurück zum Zitat Kosikova B, Joniak D, Hricovini M, Mlynar J, Zakutna L (1993) 1H and 13C NMR characterization of lignins from NSSC cooking with lignin additive. Holzforschung 47:116–122CrossRef Kosikova B, Joniak D, Hricovini M, Mlynar J, Zakutna L (1993) 1H and 13C NMR characterization of lignins from NSSC cooking with lignin additive. Holzforschung 47:116–122CrossRef
36.
Zurück zum Zitat Åkerholm M, Salmén L (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42:963–969CrossRef Åkerholm M, Salmén L (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42:963–969CrossRef
37.
Zurück zum Zitat Iwata T, Indrarti L, Azuma J-I (1998) Affinity of hemicellulose for cellulose produced by Acetobacter xylinum. Cellulose 5:215–228CrossRef Iwata T, Indrarti L, Azuma J-I (1998) Affinity of hemicellulose for cellulose produced by Acetobacter xylinum. Cellulose 5:215–228CrossRef
38.
Zurück zum Zitat Bishop CT (1953) Crystalline xylans from straws. Can J Chem 31:793–800CrossRef Bishop CT (1953) Crystalline xylans from straws. Can J Chem 31:793–800CrossRef
39.
Zurück zum Zitat Salmén L, Olsson A-M (1998) Interaction between hemicelluloses, lignin and cellulose: structure–property relationships. J Pulp Pap Sci 24:99–103 Salmén L, Olsson A-M (1998) Interaction between hemicelluloses, lignin and cellulose: structure–property relationships. J Pulp Pap Sci 24:99–103
40.
Zurück zum Zitat Olsson A-M, Salmén L (2004) The softening behaviour of hemicelluloses related to moisture. In: Gatenholm P, Tenkanen M (eds) ACS symposium series 864. Hemicelluloses: science and technology. American Chemical Society, Washington, DC, pp 184–197 Olsson A-M, Salmén L (2004) The softening behaviour of hemicelluloses related to moisture. In: Gatenholm P, Tenkanen M (eds) ACS symposium series 864. Hemicelluloses: science and technology. American Chemical Society, Washington, DC, pp 184–197
41.
Zurück zum Zitat Back EL, Salmén NL (1982) Glass transitions of wood components hold implications for molding and pulping processes. Tappi 65:107–110 Back EL, Salmén NL (1982) Glass transitions of wood components hold implications for molding and pulping processes. Tappi 65:107–110
42.
Zurück zum Zitat McHugh TH, Krochta JM (1994) Permeability properties of edible films. In: Krochta JM, Baldwin EA, Nisperos-Carriedo MO (eds) Edible coatings and films to improve food quality. Technomic Publishing Company, Lancaster, pp 139–187 McHugh TH, Krochta JM (1994) Permeability properties of edible films. In: Krochta JM, Baldwin EA, Nisperos-Carriedo MO (eds) Edible coatings and films to improve food quality. Technomic Publishing Company, Lancaster, pp 139–187
43.
Zurück zum Zitat Sothornvit R, Krochta JM (2000) Oxygen permeability and mechanical properties of films from hydrolyzed whey protein. J Agric Food Chem 48:3913–3916CrossRef Sothornvit R, Krochta JM (2000) Oxygen permeability and mechanical properties of films from hydrolyzed whey protein. J Agric Food Chem 48:3913–3916CrossRef
Metadaten
Titel
Wood cell wall mimicking for composite films of spruce nanofibrillated cellulose with spruce galactoglucomannan and arabinoglucuronoxylan
verfasst von
Jasna S. Stevanic
Kirsi S. Mikkonen
Chunlin Xu
Maija Tenkanen
Lars Berglund
Lennart Salmén
Publikationsdatum
01.07.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 14/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8210-7

Weitere Artikel der Ausgabe 14/2014

Journal of Materials Science 14/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.