Skip to main content
Erschienen in: Journal of Materials Science 19/2014

01.10.2014 | Ultrafinegrained Materials

Fabrication of nanograined silicon by high-pressure torsion

verfasst von: Yoshifumi Ikoma, Kazunori Hayano, Kaveh Edalati, Katsuhiko Saito, Qixin Guo, Zenji Horita, Toshihiro Aoki, David J. Smith

Erschienen in: Journal of Materials Science | Ausgabe 19/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper describes fabrication of Si nanograins through allotropic phase transformation by concurrent application of high pressure and intense straining using high-pressure torsion (HPT). Single-crystalline Si(100) wafers were processed by HPT under a pressure of 24 GPa at room temperature. X-ray diffraction and Raman analysis revealed that the HPT-processed samples were composed of metastable Si-III and Si-XII phases and amorphous phases in addition to the original diamond-cubic Si-I phase. It was found that nanograins formed because the Si-I diamond phase had transformed to high-pressure phases (Si-II, Si-XI, and Si-V) having metallic nature, and it then became easier to generate a high density of dislocations to form grain boundaries. The high-pressure phases were further transformed to the Si-XII and Si-III phases via the Si-II phase upon unloading and they existed as metastable phases at ambient pressure. Subsequent annealing at 873 K gave rise to reverse transformation to Si-I but with nanograin sizes. Although no appreciable photoluminescence (PL) peak was observed from the HPT-processed sample, a broad PL peak centered around 600 nm was detected from the annealed sample due to quantum confinement in the Si-I nanograins.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mujica A, Rubio A, Muñoz A, Needs RJ (2003) High-pressure phases of group-IV, III–V, and II–VI compounds. Rev Mod Phys 75:863–912CrossRef Mujica A, Rubio A, Muñoz A, Needs RJ (2003) High-pressure phases of group-IV, III–V, and II–VI compounds. Rev Mod Phys 75:863–912CrossRef
2.
Zurück zum Zitat Crain J, Ackland GJ, Maclean JR, Piltz RO, Hatton PD, Pawley GS (1994) Reversible pressure-induced structural transitions between metastable phases of silicon. Phys Rev B 50:13043–13046CrossRef Crain J, Ackland GJ, Maclean JR, Piltz RO, Hatton PD, Pawley GS (1994) Reversible pressure-induced structural transitions between metastable phases of silicon. Phys Rev B 50:13043–13046CrossRef
3.
Zurück zum Zitat Piltz RO, Maclean JR, Clark SJ, Ackland GJ, Hatton PD, Crain J (1995) Structure and properties of silicon XII: a complex tetrahedrally bonded phase. Phys Rev B 52:4072–4085CrossRef Piltz RO, Maclean JR, Clark SJ, Ackland GJ, Hatton PD, Crain J (1995) Structure and properties of silicon XII: a complex tetrahedrally bonded phase. Phys Rev B 52:4072–4085CrossRef
4.
Zurück zum Zitat Kailer A, Gogotsi YG, Nickel KG (1997) Phase transformations of silicon caused by contact loading. J Appl Phys 81:3057–3063CrossRef Kailer A, Gogotsi YG, Nickel KG (1997) Phase transformations of silicon caused by contact loading. J Appl Phys 81:3057–3063CrossRef
5.
Zurück zum Zitat Ruffell S, Sears K, Bradby JE, Williams JS (2011) Room temperature writing of electrically conductive and insulating zones in silicon by nanoindentation. Appl Phys Lett 98:052105CrossRef Ruffell S, Sears K, Bradby JE, Williams JS (2011) Room temperature writing of electrically conductive and insulating zones in silicon by nanoindentation. Appl Phys Lett 98:052105CrossRef
6.
Zurück zum Zitat Islamgaliev RK, Kuzel R, Mikov SN, Igo AV, Burianek J, Chmelik F, Valiev RZ (1999) Structure of silicon processed by severe plastic deformation. Mater Sci Eng A 266:205–210CrossRef Islamgaliev RK, Kuzel R, Mikov SN, Igo AV, Burianek J, Chmelik F, Valiev RZ (1999) Structure of silicon processed by severe plastic deformation. Mater Sci Eng A 266:205–210CrossRef
7.
Zurück zum Zitat Ikoma Y, Hayano K, Edalati K, Saito K, Guo Q, Horita Z (2012) Phase transformation and nanograin refinement of silicon by processing through high-pressure torsion. Appl Phys Lett 101:121908CrossRef Ikoma Y, Hayano K, Edalati K, Saito K, Guo Q, Horita Z (2012) Phase transformation and nanograin refinement of silicon by processing through high-pressure torsion. Appl Phys Lett 101:121908CrossRef
8.
Zurück zum Zitat Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45:103–189CrossRef Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45:103–189CrossRef
9.
Zurück zum Zitat Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58:33–39CrossRef Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58:33–39CrossRef
10.
Zurück zum Zitat Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53:893–979CrossRef Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53:893–979CrossRef
11.
Zurück zum Zitat Delley B, Steigmeier EF (1993) Quantum confinement in Si nanocrystals. Phys Rev B 47:1397–1400CrossRef Delley B, Steigmeier EF (1993) Quantum confinement in Si nanocrystals. Phys Rev B 47:1397–1400CrossRef
12.
Zurück zum Zitat Pavesi L, Dal Negro L, Mazzoleni C, Franzò G, Priolo F (2000) Optical gain in silicon nanocrystals. Nature 408:440–444CrossRef Pavesi L, Dal Negro L, Mazzoleni C, Franzò G, Priolo F (2000) Optical gain in silicon nanocrystals. Nature 408:440–444CrossRef
13.
Zurück zum Zitat Cullis AG, Canham LT (1991) Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature 353:335–338CrossRef Cullis AG, Canham LT (1991) Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature 353:335–338CrossRef
14.
Zurück zum Zitat Rückschloss M, Landkammer B, Vepřek S (1993) Light emitting nanocrystalline silicon prepared by dry processing: the effect of crystallite size. Appl Phys Lett 63:1474–1476CrossRef Rückschloss M, Landkammer B, Vepřek S (1993) Light emitting nanocrystalline silicon prepared by dry processing: the effect of crystallite size. Appl Phys Lett 63:1474–1476CrossRef
15.
Zurück zum Zitat Sakai G, Horita Z, Langdon TG (2005) Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion. Mater Sci Eng A 393:344–351CrossRef Sakai G, Horita Z, Langdon TG (2005) Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion. Mater Sci Eng A 393:344–351CrossRef
16.
Zurück zum Zitat Anastassakis E, Liarokapis E (1987) Polycrystalline Si under strain: elastic and lattice-dynamical considerations. J Appl Phys 62:3346–3352CrossRef Anastassakis E, Liarokapis E (1987) Polycrystalline Si under strain: elastic and lattice-dynamical considerations. J Appl Phys 62:3346–3352CrossRef
17.
Zurück zum Zitat Viera G, Huet S, Boufendi L (2001) Crystal size and temperature measurements in nanostructured silicon using Raman spectroscopy. J Appl Phys 90:4175–4183CrossRef Viera G, Huet S, Boufendi L (2001) Crystal size and temperature measurements in nanostructured silicon using Raman spectroscopy. J Appl Phys 90:4175–4183CrossRef
18.
Zurück zum Zitat Voronin GA, Pantea C, Zerda TW, Wang L, Zhao Y (2003) In situ X-ray diffraction study of silicon at pressures up to 15.5 GPa and temperatures up to 1073 K. Phys Rev B 68:020102CrossRef Voronin GA, Pantea C, Zerda TW, Wang L, Zhao Y (2003) In situ X-ray diffraction study of silicon at pressures up to 15.5 GPa and temperatures up to 1073 K. Phys Rev B 68:020102CrossRef
19.
Zurück zum Zitat Olijnyk H, Sikka SK, Holzapfel WB (1984) Structural phase transitions in Si and Ge under pressure up to 50 GPa. Phys Lett 103A:137–140CrossRef Olijnyk H, Sikka SK, Holzapfel WB (1984) Structural phase transitions in Si and Ge under pressure up to 50 GPa. Phys Lett 103A:137–140CrossRef
20.
Zurück zum Zitat Pérez-Prado MT, Gimazov AA, Ruano OA, Kassner ME, Zhilyaev AP (2008) Bulk nanocrystalline ω-Zr by high-pressure torsion. Scr Mater 58:219–222CrossRef Pérez-Prado MT, Gimazov AA, Ruano OA, Kassner ME, Zhilyaev AP (2008) Bulk nanocrystalline ω-Zr by high-pressure torsion. Scr Mater 58:219–222CrossRef
21.
Zurück zum Zitat Edalati K, Horita Z, Yagi S, Matsubara E (2009) Allotropic phase transformation of pure zirconium by high-pressure torsion. Mater Sci Eng A 523:277–281CrossRef Edalati K, Horita Z, Yagi S, Matsubara E (2009) Allotropic phase transformation of pure zirconium by high-pressure torsion. Mater Sci Eng A 523:277–281CrossRef
22.
Zurück zum Zitat Edalati K, Matsubara E, Horita Z (2009) Processing pure Ti by high-pressure torsion in wide ranges of pressures and strain. Metall Mater Trans A 40:2079–2086CrossRef Edalati K, Matsubara E, Horita Z (2009) Processing pure Ti by high-pressure torsion in wide ranges of pressures and strain. Metall Mater Trans A 40:2079–2086CrossRef
23.
Zurück zum Zitat Mazilkin AA, Abrosimova GE, Protasova SG, Straumal BB, Schütz G, Dobatkin SV, Bakai AS (2011) Transmission electron microscopy investigation of boundaries between amorphous ‘‘grains’’ in Ni50Nb20Y30 alloy. J Mater Sci 46:4336–4342CrossRef Mazilkin AA, Abrosimova GE, Protasova SG, Straumal BB, Schütz G, Dobatkin SV, Bakai AS (2011) Transmission electron microscopy investigation of boundaries between amorphous ‘‘grains’’ in Ni50Nb20Y30 alloy. J Mater Sci 46:4336–4342CrossRef
24.
Zurück zum Zitat Takeoka S, Fujii M, Hayashi S (2000) Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime. Phys Rev B 62:16820–16825CrossRef Takeoka S, Fujii M, Hayashi S (2000) Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime. Phys Rev B 62:16820–16825CrossRef
25.
Zurück zum Zitat Ledoux G, Gong J, Huisken F, Guillois O, Reynaud C (2002) Photoluminescence of size-separated silicon nanocrystals: confirmation of quantum confinement. Appl Phys Lett 80:4834–4836CrossRef Ledoux G, Gong J, Huisken F, Guillois O, Reynaud C (2002) Photoluminescence of size-separated silicon nanocrystals: confirmation of quantum confinement. Appl Phys Lett 80:4834–4836CrossRef
Metadaten
Titel
Fabrication of nanograined silicon by high-pressure torsion
verfasst von
Yoshifumi Ikoma
Kazunori Hayano
Kaveh Edalati
Katsuhiko Saito
Qixin Guo
Zenji Horita
Toshihiro Aoki
David J. Smith
Publikationsdatum
01.10.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 19/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8250-z

Weitere Artikel der Ausgabe 19/2014

Journal of Materials Science 19/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.