Skip to main content
Erschienen in: Journal of Materials Science 19/2014

01.10.2014 | Ultrafinegrained Materials

Microstructure and texture evolution in low carbon steel deformed by differential speed rolling (DSR) method

verfasst von: Kotiba Hamad, Rachmad Bastian Megantoro, Young Gun Ko

Erschienen in: Journal of Materials Science | Ausgabe 19/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The study examined the microstructural and textural evolution of low carbon steel samples fabricated using a differential speed rolling (DSR) process with respect to the number of operations. For this purpose, the samples were deformed by up to 4-pass of DSR at room temperature with a roll speed ratio of 1:4 for the lower and upper rolls, respectively. The DSR technique applied to low carbon steel samples resulted in a microstructure composed of ultrafine ferrite grains, approximately 0.4 µm in size, after 4-pass with a high-angle grain boundary fraction of ~65 %. The microstructural features of the ferrite phase indicated the occurrence of continuous dynamic recrystallization, beginning with the formation of a necklace-like structure of ultrafine equiaxed grains around the elongated grains, which were formed in the early stages of deformation, and ending with ultrafine recrystallized grains surrounded by boundaries with high angles of misorientations. In the pearlite phase, the microstructural changes associated with DSR deformation were presented by the occurrence of bending, kinking, and breaking of the cementite lamellar plates. In addition, the evolution of texture after DSR processing was affected by shear deformation and rolling deformation, leading to the formation of a texture composed of fractions of components with shear texture orientations such as {110} 〈001〉 (Goss) and orientations close to {112} 〈111〉, in addition to rolling texture components consisting mainly of α-fiber and γ-fiber.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Valiev RZ, Islamgaliev RK, Alexandrov IV (2006) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 51:881–981CrossRef Valiev RZ, Islamgaliev RK, Alexandrov IV (2006) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 51:881–981CrossRef
2.
Zurück zum Zitat Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 45:881–981CrossRef Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 45:881–981CrossRef
4.
Zurück zum Zitat Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53:893–979CrossRef Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53:893–979CrossRef
5.
Zurück zum Zitat Yoon EY, Lee DJ, Bark B, Akbarpour MR, Farvizi M, Kim HS (2013) Grain refinement and tensile strength of carbon nanotube-reinforced Cu matrix nanocomposites processed by high-pressure torsion. Met Mater Int 19:927–932CrossRef Yoon EY, Lee DJ, Bark B, Akbarpour MR, Farvizi M, Kim HS (2013) Grain refinement and tensile strength of carbon nanotube-reinforced Cu matrix nanocomposites processed by high-pressure torsion. Met Mater Int 19:927–932CrossRef
6.
Zurück zum Zitat Tsuji N, Saito Y, Lee SH, Minamino Y (2003) ARB (accumulative roll-bonding) and other new techniques to produce bulk ultrafine grained materials. Adv Eng Mater 5:338–344CrossRef Tsuji N, Saito Y, Lee SH, Minamino Y (2003) ARB (accumulative roll-bonding) and other new techniques to produce bulk ultrafine grained materials. Adv Eng Mater 5:338–344CrossRef
7.
Zurück zum Zitat Lee SH, Kim JH (2013) Mechanical properties of a complex AA1050/AA5052 aluminum alloy fabricated by an ARB. Korean J Met Mater 51:251–257 Lee SH, Kim JH (2013) Mechanical properties of a complex AA1050/AA5052 aluminum alloy fabricated by an ARB. Korean J Met Mater 51:251–257
8.
Zurück zum Zitat Orlov D, Lapovok R, Toth LS, Timokhina IB, Hodgson PD, Haldar A, Bhattacharjee D (2014) Asymmetric rolling of interstitial-free steel using differential roll diameters, Part II: microstructure and annealing effects. Metall Mater Trans A 45:447–454CrossRef Orlov D, Lapovok R, Toth LS, Timokhina IB, Hodgson PD, Haldar A, Bhattacharjee D (2014) Asymmetric rolling of interstitial-free steel using differential roll diameters, Part II: microstructure and annealing effects. Metall Mater Trans A 45:447–454CrossRef
9.
Zurück zum Zitat Orlov D, Pougis A, Lapovok R, Toth LS, Timokhina IB, Hodgson PD, Haldar A, Bhattacharjee D (2013) Asymmetric rolling of interstitial-free steel using differential roll diameters. Part I: mechanical properties and deformation textures. Metall Mater Trans A 44:4346–4359CrossRef Orlov D, Pougis A, Lapovok R, Toth LS, Timokhina IB, Hodgson PD, Haldar A, Bhattacharjee D (2013) Asymmetric rolling of interstitial-free steel using differential roll diameters. Part I: mechanical properties and deformation textures. Metall Mater Trans A 44:4346–4359CrossRef
10.
Zurück zum Zitat Sidor J, Petrov RH, Kestens LAI (2010) Deformation, recrystallization and plastic anisotropy of asymmetrically rolled aluminum sheets. Mater Sci Eng A 528:413–424CrossRef Sidor J, Petrov RH, Kestens LAI (2010) Deformation, recrystallization and plastic anisotropy of asymmetrically rolled aluminum sheets. Mater Sci Eng A 528:413–424CrossRef
11.
Zurück zum Zitat Lapovok R, Toth LS, Winkler M, Semiatin SL (2009) A comparison of continuous SPD processes for improving the mechanical properties of aluminum alloy 6111. J Mater Res 24:459–469CrossRef Lapovok R, Toth LS, Winkler M, Semiatin SL (2009) A comparison of continuous SPD processes for improving the mechanical properties of aluminum alloy 6111. J Mater Res 24:459–469CrossRef
12.
Zurück zum Zitat Hamad K, Chung KB, Ko YG (2014) Microstructure and mechanical properties of severely deformed Mg–3 %Al–1 %Zn alloy via isothermal differential speed rolling at 453 K. J Alloys Compd. doi:10.1016/j.jallcom.2013.12.195 Hamad K, Chung KB, Ko YG (2014) Microstructure and mechanical properties of severely deformed Mg–3 %Al–1 %Zn alloy via isothermal differential speed rolling at 453 K. J Alloys Compd. doi:10.​1016/​j.​jallcom.​2013.​12.​195
13.
Zurück zum Zitat Kim WJ, Lee JB, Kim WY, Jeong HT, Jeong HG (2007) Microstructure and mechanical properties of Mg–Al–Zn alloy sheets severely deformed by asymmetrical rolling. Scripta Mater 56:309–312CrossRef Kim WJ, Lee JB, Kim WY, Jeong HT, Jeong HG (2007) Microstructure and mechanical properties of Mg–Al–Zn alloy sheets severely deformed by asymmetrical rolling. Scripta Mater 56:309–312CrossRef
14.
Zurück zum Zitat Kim HS, Yoo SJ, Ahn JW, Kim DH, Kim WJ (2011) Ultrafine grained titanium sheets with high strength and high corrosion resistance. Mater Sci Eng A 528:8479–8485CrossRef Kim HS, Yoo SJ, Ahn JW, Kim DH, Kim WJ (2011) Ultrafine grained titanium sheets with high strength and high corrosion resistance. Mater Sci Eng A 528:8479–8485CrossRef
15.
Zurück zum Zitat Huang X, Suzuki K, Chino Y (2010) Improvement of stretch formability of pure titanium sheet by differential speed rolling. Scripta Mater 63:473–476CrossRef Huang X, Suzuki K, Chino Y (2010) Improvement of stretch formability of pure titanium sheet by differential speed rolling. Scripta Mater 63:473–476CrossRef
16.
Zurück zum Zitat Loorentz YGK (2012) Microstructure evolution and mechanical properties of severely deformed Al alloy processed by differential speed rolling. J Alloys Compd 536:S122–S125CrossRef Loorentz YGK (2012) Microstructure evolution and mechanical properties of severely deformed Al alloy processed by differential speed rolling. J Alloys Compd 536:S122–S125CrossRef
17.
Zurück zum Zitat Loorentz YGK (2014) Effect of differential speed rolling strain on microstructure and mechanical properties of nanostructured 5052 Al alloy. J Alloys Compd 586:S205–S209CrossRef Loorentz YGK (2014) Effect of differential speed rolling strain on microstructure and mechanical properties of nanostructured 5052 Al alloy. J Alloys Compd 586:S205–S209CrossRef
18.
Zurück zum Zitat Polkowski W, Jozwik P, Polanski M, Bojar Z (2013) Microstructure and texture evolution of copper processed by differential speed rolling with various speed asymmetry coefficient. Mater Sci Eng A 564:289–297CrossRef Polkowski W, Jozwik P, Polanski M, Bojar Z (2013) Microstructure and texture evolution of copper processed by differential speed rolling with various speed asymmetry coefficient. Mater Sci Eng A 564:289–297CrossRef
19.
Zurück zum Zitat Kim WJ, Lee KE, Choi SH (2009) Mechanical properties and microstructure of ultrafine grained copper prepared by a high-speed-ratio differential speed rolling. Mater Sci Eng A 506:71–79CrossRef Kim WJ, Lee KE, Choi SH (2009) Mechanical properties and microstructure of ultrafine grained copper prepared by a high-speed-ratio differential speed rolling. Mater Sci Eng A 506:71–79CrossRef
20.
Zurück zum Zitat Ko YG, Suharto J, Park BH, Shin DH (2013) Effect of speed ratio on deformation characterization of IF steel subjected to differential speed rolling. Met Mater Int 19:603–609CrossRef Ko YG, Suharto J, Park BH, Shin DH (2013) Effect of speed ratio on deformation characterization of IF steel subjected to differential speed rolling. Met Mater Int 19:603–609CrossRef
21.
Zurück zum Zitat Suharto J, Ko YG (2012) Annealing behavior of severely deformed IF steel via the differential speed rolling method. Mater Sci Eng A 558:90–94CrossRef Suharto J, Ko YG (2012) Annealing behavior of severely deformed IF steel via the differential speed rolling method. Mater Sci Eng A 558:90–94CrossRef
22.
Zurück zum Zitat Kim WJ, Wang JY, Choi SO, Choi JJ, Sohn HT (2009) Synthesis of ultra-high strength Al–Mg–Si alloy sheets by differential speed rolling. Mater Sci Eng A 520:23–28CrossRef Kim WJ, Wang JY, Choi SO, Choi JJ, Sohn HT (2009) Synthesis of ultra-high strength Al–Mg–Si alloy sheets by differential speed rolling. Mater Sci Eng A 520:23–28CrossRef
23.
Zurück zum Zitat Zubaydi A, Figueiredo RB, Huang Y, Langdon TG (2013) Structural and hardness inhomogeneities in Mg–Al–Zn alloys processed by high-pressure torsion. J Mater Sci 48:4661–4670. doi:10.1007/s10853-013-7176-1 CrossRef Zubaydi A, Figueiredo RB, Huang Y, Langdon TG (2013) Structural and hardness inhomogeneities in Mg–Al–Zn alloys processed by high-pressure torsion. J Mater Sci 48:4661–4670. doi:10.​1007/​s10853-013-7176-1 CrossRef
24.
Zurück zum Zitat Xu J, Wang X, Zhu X, Shirooyeh M, Ngam JW, Shan D, Guo B, Langdon TG (2013) Dry sliding wear of an AZ31 magnesium alloy processed by equal-channel angular pressing. J Mater Sci 48:4117–4127. doi:10.1007/s10853-013-7224-x CrossRef Xu J, Wang X, Zhu X, Shirooyeh M, Ngam JW, Shan D, Guo B, Langdon TG (2013) Dry sliding wear of an AZ31 magnesium alloy processed by equal-channel angular pressing. J Mater Sci 48:4117–4127. doi:10.​1007/​s10853-013-7224-x CrossRef
25.
Zurück zum Zitat Shin DH, Park KT (2005) Ultrafine grained steels processed by equal channel angular pressing. Mater Sci Eng A 410:299–302CrossRef Shin DH, Park KT (2005) Ultrafine grained steels processed by equal channel angular pressing. Mater Sci Eng A 410:299–302CrossRef
26.
Zurück zum Zitat Son YI, Lee YK, Park KT, Lee CS, Shin DH (2005) Ultrafine grained ferrite–martensite dual phase steels fabricated via equal channel angular pressing: microstructure and tensile properties. Acta Mater 53:3125–3134CrossRef Son YI, Lee YK, Park KT, Lee CS, Shin DH (2005) Ultrafine grained ferrite–martensite dual phase steels fabricated via equal channel angular pressing: microstructure and tensile properties. Acta Mater 53:3125–3134CrossRef
27.
Zurück zum Zitat Shin DH, Kim I, Kim J, Park KT (2001) Grain refinement mechanism during equal-channel angular pressing of a low-carbon steel. Acta Mater 49:1285–1292CrossRef Shin DH, Kim I, Kim J, Park KT (2001) Grain refinement mechanism during equal-channel angular pressing of a low-carbon steel. Acta Mater 49:1285–1292CrossRef
28.
Zurück zum Zitat Fukuda Y, Oh-ishi K, Horita Z, Langdon TG (2002) Processing of a low-carbon steel by equal-channel angular pressing. Acta Mater 50:1359–1368CrossRef Fukuda Y, Oh-ishi K, Horita Z, Langdon TG (2002) Processing of a low-carbon steel by equal-channel angular pressing. Acta Mater 50:1359–1368CrossRef
29.
Zurück zum Zitat Maier GG, Astafurova EG, Maier HJ, Naydenkin EV, Raab GI, Odessky PD, Dobatkin SV (2013) Annealing behavior of ultrafine grained structure in low-carbon steel produced by equal channel angular pressing. Mater Sci Eng A 581:104–107CrossRef Maier GG, Astafurova EG, Maier HJ, Naydenkin EV, Raab GI, Odessky PD, Dobatkin SV (2013) Annealing behavior of ultrafine grained structure in low-carbon steel produced by equal channel angular pressing. Mater Sci Eng A 581:104–107CrossRef
30.
Zurück zum Zitat Sitdikov O, Sakai T, Avtokratova E, Kaibyshev R, Tsuzaki K, Watanabe Y (2008) Microstructure behavior of Al–Mg–Sc alloy processed by ECAP at elevated temperature. Acta Mater 56:821–834CrossRef Sitdikov O, Sakai T, Avtokratova E, Kaibyshev R, Tsuzaki K, Watanabe Y (2008) Microstructure behavior of Al–Mg–Sc alloy processed by ECAP at elevated temperature. Acta Mater 56:821–834CrossRef
31.
Zurück zum Zitat Mazurina I, Sakai T, Miura H, Sitdikov O, Kaibyshev R (2008) Grain refinement in aluminum alloy 2219 during ECAP at 250°C. Mater Sci Eng A 473:1297–1305CrossRef Mazurina I, Sakai T, Miura H, Sitdikov O, Kaibyshev R (2008) Grain refinement in aluminum alloy 2219 during ECAP at 250°C. Mater Sci Eng A 473:1297–1305CrossRef
32.
Zurück zum Zitat Cui Q, Ohori K (2000) Grain refinement of high purity aluminum by asymmetric rolling. Mater Sci Technol 16:1095–1101CrossRef Cui Q, Ohori K (2000) Grain refinement of high purity aluminum by asymmetric rolling. Mater Sci Technol 16:1095–1101CrossRef
33.
Zurück zum Zitat Sakai T, Belyakov A, Kaibyshev R, Miura H, Jonas JJ (2014) Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog Mater Sci 60:130–207CrossRef Sakai T, Belyakov A, Kaibyshev R, Miura H, Jonas JJ (2014) Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog Mater Sci 60:130–207CrossRef
34.
Zurück zum Zitat Shin DH, Kim BC, Kim YS, Park KT (2000) Microstructure evolution in commercial low carbon steel by equal channel angular pressing. Acta Mater 48:2247–2255CrossRef Shin DH, Kim BC, Kim YS, Park KT (2000) Microstructure evolution in commercial low carbon steel by equal channel angular pressing. Acta Mater 48:2247–2255CrossRef
35.
Zurück zum Zitat Xiong Y, He T, Guo Z, He H, Ren F, Volinsky A (2013) Mechanical properties and fracture characteristics of high carbon steel after equal channel angular pressing. Mater Sci Eng A 563:163–167CrossRef Xiong Y, He T, Guo Z, He H, Ren F, Volinsky A (2013) Mechanical properties and fracture characteristics of high carbon steel after equal channel angular pressing. Mater Sci Eng A 563:163–167CrossRef
36.
Zurück zum Zitat Kamikawa N, Sakai T, Tsuji N (2007) Effect of redundant shear strain on microstructure and texture evolution during accumulative roll-bonding in ultralow carbon IF steel. Acta Mater 55:5873–5888CrossRef Kamikawa N, Sakai T, Tsuji N (2007) Effect of redundant shear strain on microstructure and texture evolution during accumulative roll-bonding in ultralow carbon IF steel. Acta Mater 55:5873–5888CrossRef
Metadaten
Titel
Microstructure and texture evolution in low carbon steel deformed by differential speed rolling (DSR) method
verfasst von
Kotiba Hamad
Rachmad Bastian Megantoro
Young Gun Ko
Publikationsdatum
01.10.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 19/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8280-6

Weitere Artikel der Ausgabe 19/2014

Journal of Materials Science 19/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.