Skip to main content
Erschienen in: Journal of Materials Science 19/2015

01.10.2015 | Original Paper

Preparation of mesoporous TiO2-B nanowires from titanium glycolate and their application as an anode material for lithium-ion batteries

verfasst von: Jingfeng Wang, Junjie Xie, Yanmei Jiang, Jingjing Zhang, Yingguo Wang, Zhongfu Zhou

Erschienen in: Journal of Materials Science | Ausgabe 19/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

TiO2-B nanowires with remarkable mesoporous structure via a template-free low-temperature hydrothermal fabrication route have been prepared by employing titanium glycolate (TG) as a precursor. The formation of mesopores in TiO2-B nanowires is caused by the evolvement of vacancies derived from the chains of TG. The product is characterized by X-ray diffraction, Raman spectroscopy, nitrogen adsorption–desorption, and electron microscopy. The lithium-ion storage capacity of mesoporous TiO2-B nanowires is evaluated by galvanostatic measurements. The initial discharge–charge capacities of the material are 310 and 231 mAh g−1 at a current density of 50 mA g−1, respectively. A discharge capacity of 198 mAh g−1 is still retained when charge–discharge at 1.0 A g−1 for 50 cycles, demonstrating the high-rate performance and good cycle ability. The large reversible capacity, high-rate performance, and good cycle ability of the material are attributed to unique mesoporous structure and intrinsic properties of the TiO2-B nanowires. The mesoporous TiO2-B nanowire synthesized from TG is promising for use as an anode material for lithium-ion batteries with high power and energy densities.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Wang Y, Wu M, Zhang WF (2008) Preparation and electrochemical characterization of TiO2 nanowires as an electrode material for lithium-ion batteries. Electrochim Acta 53:7863–7868CrossRef Wang Y, Wu M, Zhang WF (2008) Preparation and electrochemical characterization of TiO2 nanowires as an electrode material for lithium-ion batteries. Electrochim Acta 53:7863–7868CrossRef
2.
Zurück zum Zitat Jiang YM, Wang KX, Guo XX, Wei X, Wang JF, Chen JS (2012) Mesoporous titania rods as an anode material for high performance lithium-ion batteries. J Power Sources 214:298–302CrossRef Jiang YM, Wang KX, Guo XX, Wei X, Wang JF, Chen JS (2012) Mesoporous titania rods as an anode material for high performance lithium-ion batteries. J Power Sources 214:298–302CrossRef
3.
Zurück zum Zitat Wang J, Bai Y, Wu M, Yin J, Zhang WF (2009) Preparation and electrochemical properties of TiO2 hollow spheres as an anode material for lithium-ion batteries. J Power Sources 191:614–618CrossRef Wang J, Bai Y, Wu M, Yin J, Zhang WF (2009) Preparation and electrochemical properties of TiO2 hollow spheres as an anode material for lithium-ion batteries. J Power Sources 191:614–618CrossRef
4.
Zurück zum Zitat Jiang YM, Wang KX, Zhang HJ, Wang JF, Chen JS (2013) Hierarchical Li4Ti5O12/TiO2 composite tubes with regular structural imperfection for lithium ion storage. Sci Rep 3:3490 Jiang YM, Wang KX, Zhang HJ, Wang JF, Chen JS (2013) Hierarchical Li4Ti5O12/TiO2 composite tubes with regular structural imperfection for lithium ion storage. Sci Rep 3:3490
5.
Zurück zum Zitat Liu S, Jia H, Han L, Wang J, Gao P, Xu D, Yang J, Che S (2012) Nanosheet-constructed porous TiO2-B for advanced lithium ion batteries. Adv Mater 24:3201–3204CrossRef Liu S, Jia H, Han L, Wang J, Gao P, Xu D, Yang J, Che S (2012) Nanosheet-constructed porous TiO2-B for advanced lithium ion batteries. Adv Mater 24:3201–3204CrossRef
6.
Zurück zum Zitat Wilkening M, Lyness C, Armstrong AR, Bruce PG (2009) Diffusion in confined dimensions: Li+ transport in mixed conducting TiO2-B nanowires. J Phys Chem C 113:4741–4744CrossRef Wilkening M, Lyness C, Armstrong AR, Bruce PG (2009) Diffusion in confined dimensions: Li+ transport in mixed conducting TiO2-B nanowires. J Phys Chem C 113:4741–4744CrossRef
7.
Zurück zum Zitat Zukalova M, Kalbac M, Kavan L, Exnar I, Graetzel M (2005) Pseudocapacitive lithium storage in TiO2 (B). Chem Mater 17:1248–1255CrossRef Zukalova M, Kalbac M, Kavan L, Exnar I, Graetzel M (2005) Pseudocapacitive lithium storage in TiO2 (B). Chem Mater 17:1248–1255CrossRef
8.
Zurück zum Zitat Gentili V, Brutti S, Hardwick LJ, Armstrong AR, Panero S, Bruce PG (2012) Lithium insertion into anatase nanotubes. Chem Mater 24:4468–4476CrossRef Gentili V, Brutti S, Hardwick LJ, Armstrong AR, Panero S, Bruce PG (2012) Lithium insertion into anatase nanotubes. Chem Mater 24:4468–4476CrossRef
9.
Zurück zum Zitat Armstrong AR, Armstrong G, Canales J, Bruce PG (2005) TiO2-B nanowires as negative electrodes for rechargeable lithium batteries. J Power Sources 146:501–506CrossRef Armstrong AR, Armstrong G, Canales J, Bruce PG (2005) TiO2-B nanowires as negative electrodes for rechargeable lithium batteries. J Power Sources 146:501–506CrossRef
10.
Zurück zum Zitat Armstrong AR, Armstrong G, Canales J, Bruce PG (2004) TiO2-B nanowires. Angew Chem Int Ed 43:2286–2288CrossRef Armstrong AR, Armstrong G, Canales J, Bruce PG (2004) TiO2-B nanowires. Angew Chem Int Ed 43:2286–2288CrossRef
11.
Zurück zum Zitat Armstrong AR, Armstrong G, Canales J, Garcia R, Bruce PG (2005) Lithium-ion intercalation into TiO2-B nanowires. Adv Mater 17:862–865CrossRef Armstrong AR, Armstrong G, Canales J, Garcia R, Bruce PG (2005) Lithium-ion intercalation into TiO2-B nanowires. Adv Mater 17:862–865CrossRef
12.
Zurück zum Zitat Yoshida R, Suzuki Y, Yoshikawa S (2005) Syntheses of TiO2 (B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments. J Solid State Chem 178:2179–2185CrossRef Yoshida R, Suzuki Y, Yoshikawa S (2005) Syntheses of TiO2 (B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments. J Solid State Chem 178:2179–2185CrossRef
13.
Zurück zum Zitat Dylla AG, Henkelman G, Stevenson KJ (2013) Lithium insertion in nanostrucutred TiO2 (B) architechtures. Acc Chem Res 46:1104–1112CrossRef Dylla AG, Henkelman G, Stevenson KJ (2013) Lithium insertion in nanostrucutred TiO2 (B) architechtures. Acc Chem Res 46:1104–1112CrossRef
14.
Zurück zum Zitat Li W, Bai Y, Zhuang W, Chan KY, Liu C, Yang ZH, Feng X, Lu XH (2014) Highly crystalline mesoporous TiO2 (B) nanofibers. J Phys Chem C 118:3049–3055CrossRef Li W, Bai Y, Zhuang W, Chan KY, Liu C, Yang ZH, Feng X, Lu XH (2014) Highly crystalline mesoporous TiO2 (B) nanofibers. J Phys Chem C 118:3049–3055CrossRef
15.
Zurück zum Zitat Zhen MM, Guo SQ, Gao GD, Zhou Z, Liu L (2015) TiO2-B nanorods on reduced graphene oxide as anode materials for Li ion batteries. Chem Commun 51:507–510CrossRef Zhen MM, Guo SQ, Gao GD, Zhou Z, Liu L (2015) TiO2-B nanorods on reduced graphene oxide as anode materials for Li ion batteries. Chem Commun 51:507–510CrossRef
16.
Zurück zum Zitat Giannuzzi R, Manca M, De Marco L, Belviso MR, Cannavale A, Sibillano T, Giannini C, Cozzoli PD, Gigli G (2014) Ultrathin TiO2 (B) nanorods with superior lithium-ion storage performance. ACS Appl Mater Interfaces 6:1933–1943CrossRef Giannuzzi R, Manca M, De Marco L, Belviso MR, Cannavale A, Sibillano T, Giannini C, Cozzoli PD, Gigli G (2014) Ultrathin TiO2 (B) nanorods with superior lithium-ion storage performance. ACS Appl Mater Interfaces 6:1933–1943CrossRef
17.
Zurück zum Zitat Qu J, Cloud JE, Yang Y, Ding J, Yuan N (2014) Synthesis of nanoparticles-deposited double-walled TiO2-B nanotubes with enhanced performance for lithium-ion batteries. ACS Appl Mater Interfaces 6:22199–22208CrossRef Qu J, Cloud JE, Yang Y, Ding J, Yuan N (2014) Synthesis of nanoparticles-deposited double-walled TiO2-B nanotubes with enhanced performance for lithium-ion batteries. ACS Appl Mater Interfaces 6:22199–22208CrossRef
18.
Zurück zum Zitat Pavasupree S, Suzuki Y, Yoshikawa S, Kawahata R (2005) Synthesis of titanate, TiO2 (B), and anatase TiO2 nanofibers from natural rutile sand. J Solid State Chem 178:3110–3116CrossRef Pavasupree S, Suzuki Y, Yoshikawa S, Kawahata R (2005) Synthesis of titanate, TiO2 (B), and anatase TiO2 nanofibers from natural rutile sand. J Solid State Chem 178:3110–3116CrossRef
19.
Zurück zum Zitat Zhao B, Chen F, Qu WW, Zhang JL (2009) The evolvement of pits and dislocations on TiO2-B nanowires via oriented attachment growth. J Solid State Chem 182:2225–2230CrossRef Zhao B, Chen F, Qu WW, Zhang JL (2009) The evolvement of pits and dislocations on TiO2-B nanowires via oriented attachment growth. J Solid State Chem 182:2225–2230CrossRef
20.
Zurück zum Zitat Zou XX, Li GD, Guo MY, Li XH, Liu DP, Su J, Chen JS (2008) Heterometal alkoxides as precursors for the preparation of porous Fe- and Mn-TiO2 photocatalysts with high efficiencies. Chem Eur J 14:11123–11131CrossRef Zou XX, Li GD, Guo MY, Li XH, Liu DP, Su J, Chen JS (2008) Heterometal alkoxides as precursors for the preparation of porous Fe- and Mn-TiO2 photocatalysts with high efficiencies. Chem Eur J 14:11123–11131CrossRef
21.
Zurück zum Zitat Wang D, Yu R, Kumada N, Kinomura N (1999) Hydrothermal synthesis and characterization of a novel one-dimensional titanium glycolate complex single crystal: Ti(OCH2CH2O)2. Chem Mater 11:2008–2012CrossRef Wang D, Yu R, Kumada N, Kinomura N (1999) Hydrothermal synthesis and characterization of a novel one-dimensional titanium glycolate complex single crystal: Ti(OCH2CH2O)2. Chem Mater 11:2008–2012CrossRef
22.
Zurück zum Zitat Su J, Zou XX, Li GD, Jiang YM, Cao Y, Zhao J, Chen JS (2013) Room temperature spontaneous crystallization of porous amorphous titania into a high-surface-area anatase photocatalyst. Chem Commun 49:8217–8219CrossRef Su J, Zou XX, Li GD, Jiang YM, Cao Y, Zhao J, Chen JS (2013) Room temperature spontaneous crystallization of porous amorphous titania into a high-surface-area anatase photocatalyst. Chem Commun 49:8217–8219CrossRef
23.
Zurück zum Zitat Jiang YM, Wang KX, Zhang HJ, Guo XX, Wang JF, Li GD, Chen JS (2013) Distinct effect of hierarchical structure on performance of anatase as an anode material for lithium-ion batteries. RSC Adv 3:26052–26058CrossRef Jiang YM, Wang KX, Zhang HJ, Guo XX, Wang JF, Li GD, Chen JS (2013) Distinct effect of hierarchical structure on performance of anatase as an anode material for lithium-ion batteries. RSC Adv 3:26052–26058CrossRef
24.
Zurück zum Zitat Zou XX, Li GD, Wang KX, Li L, Su J, Chen JS (2010) Light-induced formation of porous TiO2 with superior electron-storing capacity. Chem Commun 46:2112–2114CrossRef Zou XX, Li GD, Wang KX, Li L, Su J, Chen JS (2010) Light-induced formation of porous TiO2 with superior electron-storing capacity. Chem Commun 46:2112–2114CrossRef
25.
Zurück zum Zitat Wang D, Zhou F, Wang C, Liu W (2008) Synthesis and characterization of silver nanoparticle loaded mesoporous TiO2 nanobelts. Microporous Mesoporous Mater 116:658–664CrossRef Wang D, Zhou F, Wang C, Liu W (2008) Synthesis and characterization of silver nanoparticle loaded mesoporous TiO2 nanobelts. Microporous Mesoporous Mater 116:658–664CrossRef
26.
Zurück zum Zitat Dahn JR, Zheng T, Liu Y, Xue JS (1995) Mechanisms for lithium insertion in carbonaceous materials. Science 270:590–593CrossRef Dahn JR, Zheng T, Liu Y, Xue JS (1995) Mechanisms for lithium insertion in carbonaceous materials. Science 270:590–593CrossRef
27.
Zurück zum Zitat Hu YS, Kienle L, Guo YG, Maier J (2006) High lithium electroactivity of nanometer-sized rutile TiO2. Adv Mater 18:1421–1426CrossRef Hu YS, Kienle L, Guo YG, Maier J (2006) High lithium electroactivity of nanometer-sized rutile TiO2. Adv Mater 18:1421–1426CrossRef
28.
Zurück zum Zitat Huang H, Yu Z, Zhu W, Gan Y, Xia Y, Tao X, Zhang W (2014) Hierarchically porous nanoflowers from TiO2-B nanosheets with ultrahigh surface area for advanced lithium-ion batteries. J Phys Chem Solids 75:619–623CrossRef Huang H, Yu Z, Zhu W, Gan Y, Xia Y, Tao X, Zhang W (2014) Hierarchically porous nanoflowers from TiO2-B nanosheets with ultrahigh surface area for advanced lithium-ion batteries. J Phys Chem Solids 75:619–623CrossRef
29.
Zurück zum Zitat Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nanosized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499CrossRef Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nanosized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499CrossRef
30.
Zurück zum Zitat Xu J, Wang Y, Li Z, Zhang WF (2008) Preparation and electrochemical properties of carbon-doped TiO2 nanotubes as an anode material for lithium-ion batteries. J Power Sources 175:903–908CrossRef Xu J, Wang Y, Li Z, Zhang WF (2008) Preparation and electrochemical properties of carbon-doped TiO2 nanotubes as an anode material for lithium-ion batteries. J Power Sources 175:903–908CrossRef
31.
Zurück zum Zitat Jiang C, Honma I, Kudo T, Zhou H (2007) Nanocrystalline rutile TiO2 electrode for high-capacity and high-rate lithium storage. Electrochem Solid State Lett 10:A127–A129CrossRef Jiang C, Honma I, Kudo T, Zhou H (2007) Nanocrystalline rutile TiO2 electrode for high-capacity and high-rate lithium storage. Electrochem Solid State Lett 10:A127–A129CrossRef
32.
Zurück zum Zitat Qiao Y, Hu X, Huang Y (2012) Microwave-induced solid-state synthesis of TiO2(B) nanobelts with enhanced lithium-storage properties. J Nanopart Res 14:684CrossRef Qiao Y, Hu X, Huang Y (2012) Microwave-induced solid-state synthesis of TiO2(B) nanobelts with enhanced lithium-storage properties. J Nanopart Res 14:684CrossRef
33.
Zurück zum Zitat Yoon S, Manthiram A (2011) Hollow core-shell mesoporous TiO2 spheres for lithium ion storage. J Phys Chem C 115:9410–9416CrossRef Yoon S, Manthiram A (2011) Hollow core-shell mesoporous TiO2 spheres for lithium ion storage. J Phys Chem C 115:9410–9416CrossRef
34.
Zurück zum Zitat Lu D, Li W, Zuo X, Yuan Z, Huang Q (2007) Study on electrode kinetics of Li+ insertion in LixMn2O4 (0 ≤ x ≤ 1) by electrochemical impedance spectroscopy. J Phys Chem C 111:12067–12074CrossRef Lu D, Li W, Zuo X, Yuan Z, Huang Q (2007) Study on electrode kinetics of Li+ insertion in LixMn2O4 (0 ≤ x ≤ 1) by electrochemical impedance spectroscopy. J Phys Chem C 111:12067–12074CrossRef
Metadaten
Titel
Preparation of mesoporous TiO2-B nanowires from titanium glycolate and their application as an anode material for lithium-ion batteries
verfasst von
Jingfeng Wang
Junjie Xie
Yanmei Jiang
Jingjing Zhang
Yingguo Wang
Zhongfu Zhou
Publikationsdatum
01.10.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 19/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9172-0

Weitere Artikel der Ausgabe 19/2015

Journal of Materials Science 19/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.